Q1 3-Phase TNPC Module

The NXH25T120L2Q1PG/PTG is a case power module containing a three channel T-type neutral-point clamped (TNPC) circuit. Each channel has a two 1200 V, 25 A IGBTs with inverse diodes and two 650 V, 20 A IGBTs with inverse diodes. The module contains an NTC thermistor.

Features

- Low Package Height
- Compact 82.5 mm x 37.4 mm x 12 mm Package
- Press-fit Pins
- Options with Pre-applied Thermal Interface Material (TIM) and Without Pre-applied TIM
- Thermistor

Typical Applications

- Solar Inverters
- UPS

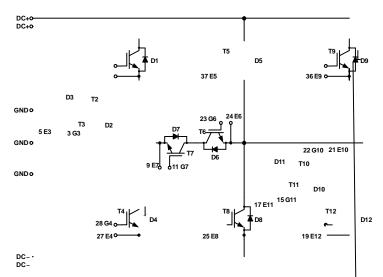
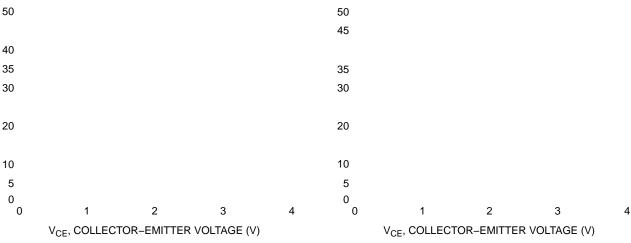


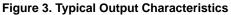
Figure 1. NXH25T120L2Q1PG/PTG Schematic Diagram

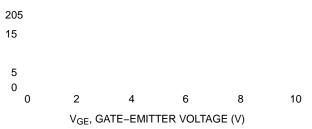
Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			
Collector–Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ T _c = 80°C (T _J = 175°C)	I _C	25	А
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	75	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	81	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, $T_{J} \le 150^{\circ}C$	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT IGBT			
Collector–Emitter Voltage	V _{CES}	650	V
Gate-Emitter Voltage	V _{GE}	±20	


Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
NEUTRAL POINT IGBT CHARACTERISTI	ics		•				_
Collector–Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	_	200	μΑ]
Collector–Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 20 A, T _J = 25°C	V _{CE(sat)}	-	1.49	-	V	1
	V _{GE} = 15 V, I _C = 20 A, T _J = 125°C	7	-	1.61	_	1	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 1.65 \text{ mA}$	V _{GE(TH)}	4.70	5.68	6.50	V	1
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	_	200	nA	1
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	33	_	ns	1
Rise Time	V_{CE} = 350 V, I_{C} = 15 A V_{GF} = ±15V, R_{G} = 15 Ω	t _r	-	18	-	1	
Turn-off Delay Time	VGE = ±15 v, NG = 15 52	t _{d(off)}	-	126	-	1	
Fall Time	7	t _f	-	43	-		
Turn-on Switching Loss per Pulse	7	E _{on}	-	250	_	μJ	1
Turn off Switching Loss per Pulse	7	E _{off}	-	180	_	1	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	31	-	ns	1
Rise Time	$V_{CE} = 350 \text{ V, } I_{C} = 15 \text{ A}$ $V_{GF} = \pm 15 \text{ V, } R_{G} = 15 \Omega$	t _r	1 15.3	364 re ∙9 r43	461 .7 64 .	90707 15	.364 rf446.343 4
Turn-off Delay Time	VGE = ±13 V, NG = 13 52	t _{d(off)}	-	138	_	1	
Fall Time	7	t ₈₈₃₇ F	T8 764 .90	7 ₀₉₄ 7629 11	ef5(4 3 46	1.764 .90	70744665)Tj/(4
		C of0/ D/	∩ ⊳⊔¬₽Т0	2 0 c0 Tw/\	1 25 200 Ti/	/5242_02 <i>5</i>	i Son Son Tw/C\c


Table 3. ELECTRICAL CHARACTERISTICS $\mathsf{T}_J = 25^{\circ}\mathsf{C}$ unless otherwise noted


Parameter Symbol Min Typ Max Unit

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

Figure 2. Typical Output Characteristics

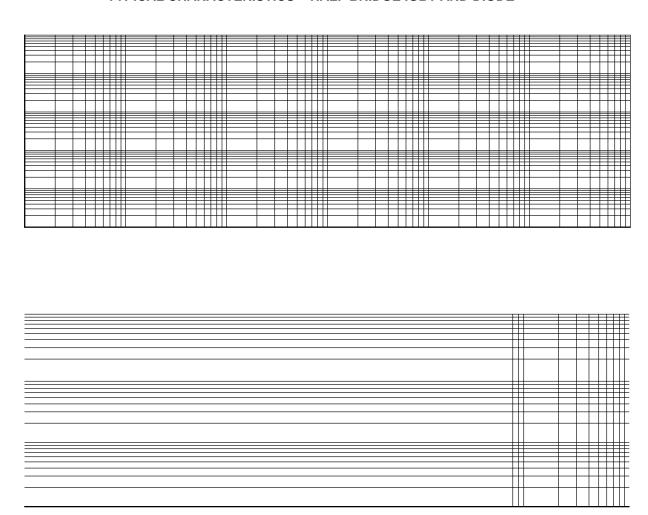


Figure 4. Typical Transfer Characteristics

V_F, FORWARD VOLTAGE (V)

Figure 5. Diode Forward Characteristics

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT AND DIODE					

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

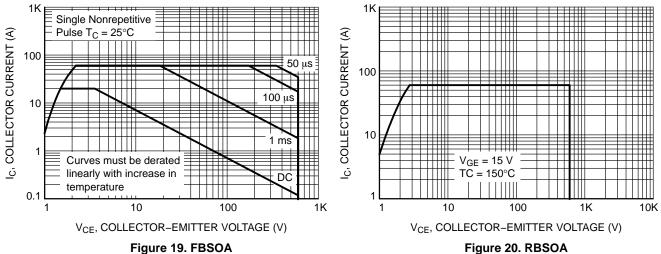


Figure 19. FBSOA

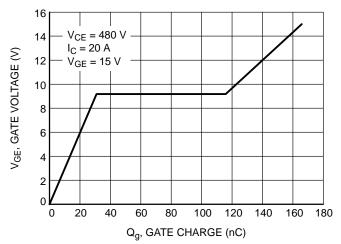
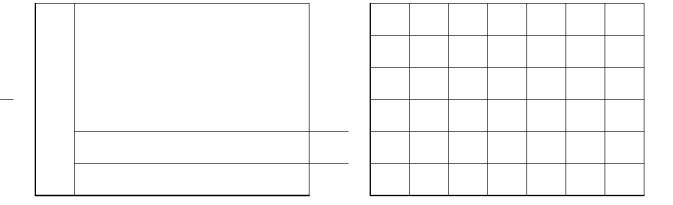
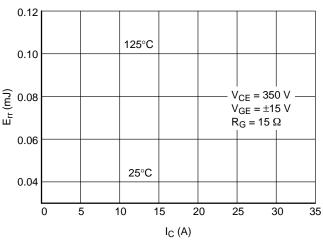
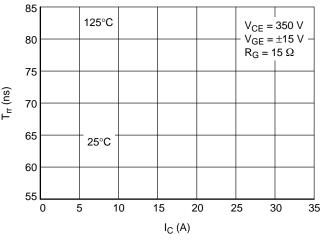




Figure 21. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE


TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

0.14 0.12 0.10 125°C $V_{CE} = 350 \text{ V}$ 80.0 E $V_{GE} = \pm 15 \text{ V}$ I_C = 15 A 0.06 25°C 0.04 0.02 20 15 25 35 0 5 10 $R_G(\Omega)$

Figure 34. Typical Reverse Recovery Energy vs. I_C

Figure 35. Typical Reverse Recovery Energy vs. R_G

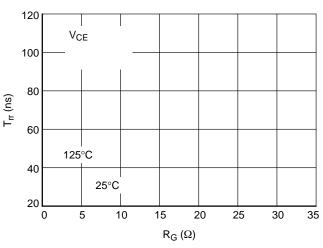
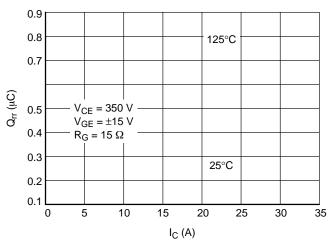



Figure 36. Typical Reverse Recovery Time vs. $\ensuremath{\text{I}_{\text{C}}}$

Figure 37. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

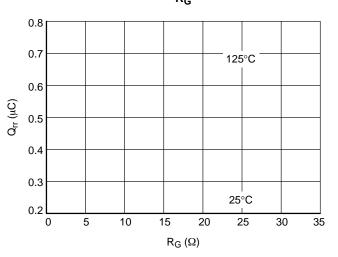
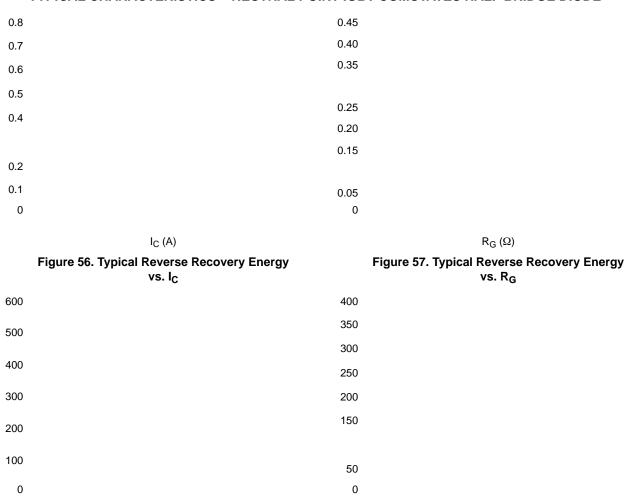


Figure 38. Typical Reverse Recovery Charge vs. I_C

Figure 39. Typical Reverse Recovery Charge vs. R_G

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

I_C (A)


Figure 40. Typical Reverse Recovery Current vs. I_C

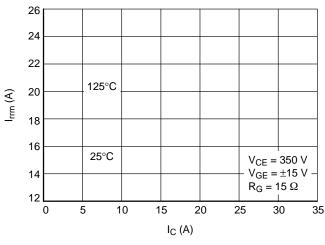
 R_{G}

Figure 41. Typical Reverse Recovery Current vs. R_G

TYPICAL CHARACTERISTICS -		

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

 $$I_{C}\left(A\right)$$ Figure 58. Typical Reverse Recovery Time vs. $$I_{C}$$


Figure 59. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

 $R_G(\Omega)$

Figure 60. Typical Reverse Recovery Charge vs. I_C

Figure 61. Typical Reverse Recovery Charge vs. R_G

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

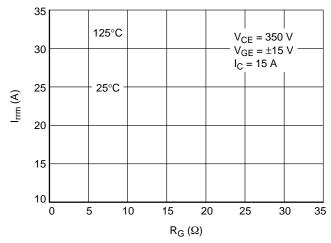
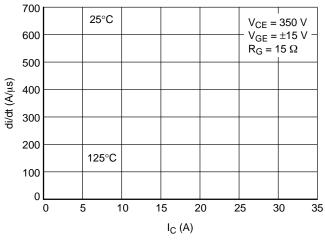



Figure 62. Typical Reverse Recovery Current vs. I_C

Figure 63. Typical Reverse Recovery Current vs. R_G

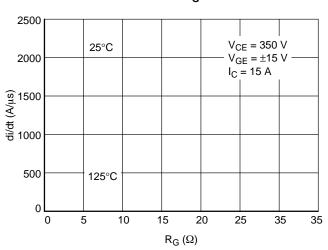


Figure 64. Typical di/dt vs. I_C

Figure 65. Typical di/dt vs. R_G

PIM44, 71x37.4 (PRESSFIT PINS) CASE 180AS ISSUE O

sx

DATE 25 JUN 2018

TOP VIEW

TERMINALS AND APRES.

PIM44, 71x37.4 CASE 180AS ISSUE O

DATE 15 JUN 2018

