Silicon Carbide (SiC) MOSFET – 80 mohm, 1200 V, M1, TO-247-4L # NVH4L080N120SC1 ### Description Silicon Carbide (SiC) MOSFET uses a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size. ### **Features** - 1200 V @ T_J= 175°C - Max $R_{DS(on)} = 110 \text{ m}\Omega$ at $V_{GS} = 20 \text{ V}$, $I_D = 20 \text{ A}$ - High Speed Switching with Low Capacitance - 100% Avalanche Tested - AEC-Q101 Qualified and PPAP Capable - This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection) ### **Applications** • ### N CHANNEL MOSFET ### **MARKING DIAGRAM** A = Assembly Location Y = Year WW = Work Week ZZ = Lot Traceability NVH4L080N120SC1 = Specific Device Code ### ORDERING INFORMATION | | Device | Package | Shipping | |--|-----------------|-----------|--------------------| | | NVH4L080N120SC1 | TO-247-4L | 30 Units /
Tube | # NVH4L080N120SC1 | ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ$ | | | | | | | | |--|--|--|--|--|--|--|--| NVH4L080N120SC1 | | |-----------------|--| # NVH4L080N120SC1 ## NVH4L080N120SC1 # **TYPICAL CHARACTERISTICS** $T_J = 25$ °C unless otherwise noted (continued) Figure 13. Junction to Case Transient Thermal Response Curve TO-247-4LD CASE 340CJ ISSUE A DATE 16 SEP 2019 Α В Øp1 D2 Α E E1 **A2** Q E/2 D1 D Ø L1 b2 **A1** b1 (3X) Ĺ 1 4 С b(4X) e1 e 2X ⊕ 0.254 M B A M