Ambient Light Sensor with I²C Interface and Dark Current Compensation

Description

Figure 1. Typical Application Circuit

Table 3. OPERATING RANGES

		Standa	rd Mode	Fast	Mode	
Rating	Symbol	Min	Max	Min	Max	Unit
Power supply voltage	VDD	2.4	3.6	2.4	3.6	V
Power supply current	I _{DD}		120		120	Α
Quiescent supply current (Note 3)	I _{DD_qe}		2.0		2.0	Α
Low level input voltage (VDD related input levels)	V_{IL}	-0.5	0.3 VDD	-0.5	0.3 VDD	V
High level input voltage (VDD related input levels) (Note 4)	V_{IH}	0.7 VDD	VDD + 0.5	0.7 VDD	VDD + 0.5	V
Hysteresis of Schmitt trigger inputs (VDD > 2 V)	V_{hys}	N/A	N/A	0.05 VDD	_	V
Low level output voltage (open drain) at 3 mA sink current (VDD > 2 V)		0	0.4	0	0.4	V
Output low current (V _{OI} =0.4 V)	l _{OL}	3	N/A	3	N/A	mA
Output low current (V _{OI} =0.6 V)	l _{OL}	N/A	N/A	6	N/A	mA
Output fall time from V_{IHmin} to V_{ILmax} with a bus capacitance, C_b from 10 pF to 400 pF (Note 4)	t _{of}	-	250	20+0.1C _b	250	ns
Pulse width of spikes which must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns
Input current of IO pin with an input voltage between 0.1 VDD and 0.9 VDD		-10	10	-10	10	Α
Capacitance on IO pin	C _I	-	10	-	10	pF
Operating free-air temperature range	T _A	-40	85	-40	<u>,</u>	•

Table 5. OPTICAL CHARACTERISTICS(Unless otherwise specified, these specifications are for VDD = 3.3 V, $T_A = 25^{\circ}\text{C}$, $T_{\text{INT}} = 200 \text{ ms}$)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Irradiance responsivity	p (see Figure 5)	R _e		545		nM
Illuminance responsivity	White LED Source: Ev = 100 lux (see Figure 6)	R _{vi100}		154		Counts
	White LED source: Ev = 1000 lux (see Figure 6)	R _{vi1000}		1543		
Dark responsivity	Ev = 0 lux (see Figure 6)	I _{DARK}		0		Counts

Figure 3. AC Characteristics

TYPICAL CHARACTERISTICS

Figure 10. Output Counts vs. Temperature (0 lux)

Figure 11. Output Counts vs. Supply Voltage (100 lux)

NOA1305 Data Registers

Table 6. NOA1305 DATA REGISTERS (Note 7)

Address	Register	Туре	Value (binary)	Description	Default (binary)
0x00	POWER_CONTROL	RW	0000 0000	Power Down	0000 1000
			0000 1000	Power On	
			0000 1001	Test Mode 1 (reserved)	
			0000 1010	Test Mode 2 (fixed output 0x5555)	
			0000 1011	Test Mode 3 (fixed output 0xAAAA)	
0x01	,	1	1	•	1

POWER_CONTROL Register (0x00)	
_	

http://onsemi.com

Example Programming Sequence

```
external subroutine I2C_Read_Byte (I2C_Address, Data_Address);
external subroutine I2C_Read_Block (I2C_Address, Data_Start_Address, Count, Memory_Map);
external subroutine I2C_Write_Byte (I2C_Address, Data_Address, Data);
external subroutine I2C_Write_Block (I2C_Address, Data_Start_Address, Count, Memory_Map);
subroutine Initialize_ALS () {
   MemBuf[0x00] = 0x08;  // POWER_CONTROL assert Power On
```

PACKAGE DIMENSIONS

CUDFN6, 2x2 CASE 505AD-01 ISSUE B

