High Performance Resonant Mode Controller with Integrated High-Voltage Drivers

The NCP1397 is a high performance controller that can be utilized in half bridge resonant topologies such as series resonant, parallel resonant and LLC resonant converters. It integrates 600 V gate drivers, simplifying layout and reducing external component count. With its unique architecture, including a 500 kHz Voltage Controlled Oscillator whose control mode permits flexibility when an ORing function is required, the NCP1397 delivers everything needed to build a reliable and rugged resonant mode power supply.

The NCP1397 provides a suite of protection features with configurable settings to optimize any application. These include: auto−recovery or fault latch−off, brown−out, open optocoupler, soft−start and short−circuit protection. Deadtime is also adjustable to overcome shoot through current.

Features

- High−Frequency Operation from 50 kHz up to 500 kHz
- 600 V High−Voltage Floating Driver
- Adjustable Minimum Switching Frequency with $\pm 3\%$ Accuracy
- Adjustable Deadtime from 100 ns to 2 μ s.
- Startup Sequence Via an Externally Adjustable Soft−Start
- Brown−Out Protection for a Simpler PFC Association
- Latched Input for Severe Fault Conditions, e.g. Over Temperature or OVP
- Timer−Based Input with Auto−Recovery Operation for Delayed Event Reaction
- Latched Overcurrent Protection
- Disable Input for Immediate Event Reaction or Simple ON/OFF Control
- \bullet V_{CC}

R18

Figure 1. Typical Application Example

PIN FUNCTION DESCRIPTION

Figure 3. Internal Circuit Architecture (NCP1397B)

MAXIMUM RATINGS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device(s) contains ESD protection and exceeds the following tests: Human Body Model 2000 V per JEDEC Standard JESD22−A114E

Machine Model 200 V per JEDEC Standard JESD22−A115−A

2. This device meets latchup tests defined by JEDEC Standard JESD78.

ELECTRICAL CHARACTERISTICS

(For typical values T_J = 25°C, for min/max values T_J = −40°C to +125°C, Max T_J = 150°C, V_{CC} = 12 V unless otherwise noted)

NCP1397A/B, NCV1397A/B

FEEDBACK SECTION

VFBoff(hyste)

ELECTRICAL CHARACTERISTICS (continued)

(For typical values T $_{\rm J}$ = 25°C, for min/max values T $_{\rm J}$ = –40°C to +125°C, Max T $_{\rm J}$ = 150°C, V $_{\rm CC}$ = 12 V unless otherwise noted)

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

The NCP1397A/B includes all necessary features to help

This techniques allows us to detect a fault on the converter in case the FB pin cannot rise above 0.3 V (to actually close the loop) in less than a duration imposed by the programmable timer. Please refer to the fault section for detailed operation of this mode.

As shown on Figure [26](#page-12-0), the internal dynamics of the VCO control voltage will be constrained between 0.5 V and 2.3 V, whereas the feedback loop will drive Pin 6 (FB) between 1.1 V and 5.3 V. If we take the default FB pin excursion numbers, $1.1 V = 50 kHz$, $5.3 V = 500 kHz$, then the VCO maximum slope will be:

$$
\frac{500 \text{ k} - 50 \text{ k}}{4.2} = 107 \text{ kHz/V}
$$

Figures 27 and 28 portray the frequency evolution depending on the feedback pin voltage level in a different frequency clamp combination.

Figure 27. Maximal Default Excursion, R **t** = 41 kΩ on Pin 4 and $R_{F(max)}$ = 1.9 kΩ on Pin 2

Figure 28. Here a Different Minimum Frequency was Programmed as well as a Maximum Frequency Excursion

Please note that the previous small−signal VCO slope has now been reduced to $300k / 4.1 = 71 kHz / V$ on M_{upper} and Mlower outputs. This offers a mean to magnify the feedback excursion on systems where the load range does not generate a wide switching frequency excursion. Due to this option, we will see how it becomes possible to observe the feedback level and implement skip cycle at light loads. It is important

Figure 42. Adding a Comparator on the BO Pin Offers a way to Latch−off the Controller

 \bullet

Figure 43. Fault Input Logic for NCP1397A

Figure 44. Fault Input Logic for NCP1397B

Figure 45. A Resistor Can Easily Program the Capacitor Discharge Time

Figure 47. At Power On, Output A is First Activated and the Frequency Slowly Decreases Based on the Soft−Start Capacitor Voltage

Figure 47 depicts an auto−recovery situation, where the timer has triggered the end of output pulses. In that case, the V_{CC} level was given by an auxiliary power supply, hence its stability during the hiccup. A similar situation can arise if the user selects a more traditional startup method, with an auxiliary winding. In that case, the $V_{CC(min)}$ comparator stops the output pulses whenever it is activated, that is to say, when V_{CC} falls below 9.5 V typical. At this time, the V_{CC} pin still receives its bias current from the startup resistor and increases toward $V_{CC(on)}$. When the voltage reaches $V_{\text{CC}(on)}$, a standard sequence takes place, involving a soft−start. Figure [48](#page-24-0) portrays this behavior.

Figure 48. When the V_{CC} is to Low, All Pulses are Stopped Until V_{CC} Goes Back to the Startup Voltage

The High−Voltage Driver

The driver features a traditional bootstrap circuitry, requiring an external high−voltage diode for the capacitor refueling path. Figure 49 shows the internal architecture of the high−voltage section.

Figure 49. The Internal High−voltage Section of the NCP1397

The device incorporates an upper UVLO circuitry that makes sure enough V_{gs} is available for the upper side MOSFET. The B and A outputs are delivered by the internal logic, as

DATE 20 AUG 2007

onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or subsidiaries