

Features

Off Chip Capacitive Isolation to Achieve Reliable High Voltage Insulation

DTI (Distance Through Insulation): 0.5 mm Maximum Working Insulation Voltage: 2000 V_{peak}

Bi directional Communication

100 kV/μs Minimum Common Mode Rejection

8 mm Creepage and Clearance Distance to Achieve Reliable High

Voltage Insulation

Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage

and 40 C to 125 C Extended Temperature Range

Over Temperature Detection

Output Enable Function (Primary and Secondary side)

PIN CONFIGURATION

Figure 2. Pin and Channel Configuration

PIN DEFINITION

Name	Pin No. NCID9401	Pin No. NCID9411	Pin No. NCID9400	Pin No. NCID9410	Description
V _{DD1}	1	1	1	1	Power Supply, Side 1
GND1	2	2	2	2	Ground Connection for V _{DD1}
V _{INA}	3	3	3	3	Input, Channel A
V_{INB}	4	4	4	4	Input, Channel B
V _{INC}	5	5	5	5	Input, Channel C
V _{IND}	6	11	6	11	Input, Channel D
EN1	-	7	-	-	Output Enable 1
NC	7	-	7	7	No Connect
GND1	8	8	8	8	Ground Connection for V _{DD1}
GND2	9	9	9	9	Ground Connection for V _{DD2}
NC	-	-	10	10	No Connect
EN2	10	10	-	-	Output Enable 2
V _{OD}	11	6	11	6	Output, Channel D
V _{OC}	12	12	12	12	Output, Channel C
V _{OB}	13	13	13	13	Output, Channel B
V _{OA}	14	14	14	14	Output, Channel A
GND2	15	15	15	15	Ground Connection for V _{DD2}
V _{DD2}	16	16	16	16	Power Supply, Side 2

NCID9401, NCID9411, NCID9400, NCID9410					
	<u></u>	www.onsemi.com			

ABSOLUTE MAXIMUM RATINGS (T_A = 25 C unless otherwise specified)

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-55 to +150	С
T _{OPR}	Operating Temperature	-40 to +125	С
T_J	Junction Temperature	-40 to +150	С
T _{SOL}	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 s	С
V_{DD}	Supply Voltage (V _{DDx})	-0.5 to 6	V
V	Voltage (V _{INx} , V _{Ox} , ENx)	-0.5 to 6	V

SWITCHING CHARACTERISTICS – NCID9411/NCID9410

Apply over all recommended conditions, $T_A = -40\,$ C to +125 C unless otherwise specified. All typical values are measured at $T_A = 25\,$ C.

Symbol	Parameter	Ch	Conditions	Min	Тур	Max	Unit	Figure
t _{PHL}	Propagation Delay to Logic Low Output (Note 8)	A, B, C	V _{DD} = 5 V, C _L = 15 pF					

TEST CIRCUITS

Figure 20. 4-Layer PCB for Digital Isolator

Figure 21. Placement of Bypass Capacitors

