

Table 4. ELECTRICAL CHARACTERISTICS ±2.7 V

 T_A = -40°C to +125°C, V_{DD} = 2.7 V, V_{REF} = 2.5 V, SCL Freq = 3.4 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Unit
ANALOG INPUT					

Full scale input range

Table 4. ELECTRICAL CHARACTERISTICS ±2.7 V

 T_A = -40°C to +125°C, V_{DD} = 2.7 V, V_{REF} = 2.5 V, SCL Freq = 3.4 MHz, unless otherwise noted.

Parameter		Test Conditions	Min	Тур	Max	Unit
DIGITAL INPUT/	OUTPUT	·	•			-
Logic Levels:	V _{IH}		0.7 x V _{DD}		V _{DD} + 0.5	V
	V _{IL}		0		0.3 x V _{DD}	V
	V _{OL}	Minimum 3 mA sink current			0.4	V
Input Leakage:	IIH	$V_{\rm IH} = V_{\rm DD} + 0.5$			10	μΑ
	IIL	$V_{IL} = 0 V$	-10			μΑ
POWER SUPPLY	REQUIREMENTS					
V _{DD}			2.7		3.6	V
Ouiocoot Curror	at	Lligh anode mode CCL 2.4 ML		225	220	۵

Quiescent Current	High speed mode: SCL = 3.4 MHz	225	320	μΑ
	Fast mode: SCL = 400 kHz	100		μΑ
	Standard mode: SCL = 100 kHz	60		μΑ
Power Dissipation	High speed mode: SCL = 3.4 MHz	675	1000	μW
	Fast mode: SCL = 400 kHz	300		μW
	Standard mode: SCL = 100 kHz	180		μW
Power Down Mode (Wrong address selected)	High speed mode: SCL = 3.4 MHz	70		μΑ

25

Table 5. ELECTRICAL CHARACTERISTICS ±5 V

 $T_A = -40^{\circ}C$ to +125°C, $V_{DD} = 5$ V, $V_{REF} = 5$ V (external), SCL Freq = 3.4 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Unit
SAMPLING DYNAMICS	•	•			
Throughput Frequency	High speed mode: SCL = 3.4 MHz			70	kSPS
	Fast mode: SCL = 400 kHz			10	kSPS
	Standard mode: SCL = 100 kHz			2.5	kSPS
Conversion Time			5		μs
AC ACCURACY	•	•			•
Total Harmonic Distortion	V _{IN} = 2.5 Vpp at 1 kHz		-72		dB
Signal-to-Ratio	V _{IN} = 2.5 Vpp at 1 kHz		50		dB
Signal-to-(Noise+Distortion) Ratio	V _{IN} = 2.5 Vpp at 1 kHz		49		dB
Spurious Free Dynamic Range	V _{IN} = 2.5 Vpp at 1 kHz		68		dB
Channel to channel isolation			90		dB
VOLTAGE REFERENCE OUTPUT					
Range		2.475	2.5	2.525	V
Internal Reference Drift			15		ppm/°C
Output Impedance	Internal reference ON		700		Ω
	Internal reference OFF		1		GΩ
Quiescent Current	Internal Reference ON, SCL and SDA pulled HIGH		1300		μΑ
VOLTAGE REFERENCE INPUT					
Range		0.05		V _{DD}	V
Resistance			1		GΩ
Current Drain	High Speed Mode: SCL = 3.4 MHz		20		μΑ
DIGITAL INPUT/OUTPUT					
Logic Levels: V _{IH}		0.7 x V _{DD}		V _{DD} + 0.5	V
V _{IL}		0		0.3 x V _{DD}	V
V _{OL}	Minimum 3 mA sink current			0.4	V
Input Leakage: I _{IH}	$V_{IH} = V_{DD} + 0.5$			10	μΑ
Ι _{ΙL}	$V_{IL} = 0 V$	-10			μΑ
POWER SUPPLY REQUIREMENTS					
V _{DD}		4.75		5.25	V
Quiescent Current	High speed mode: SCL = 3.4 MHz		750	1000	μΑ
	Fast mode: SCL = 400 kHz		300		μΑ
	Standard mode: SCL = 100 kHz		150		μΑ
Power Dissipation	High speed mode: SCL = 3.4 MHz		3.75	5	mW
	Fast mode: SCL = 400 kHz		1.5		mW
	Standard mode: SCL = 100 kHz		0.75		mW

Table 5. ELECTRICAL CHARACTERISTICS ±5 V

 $T_A = -40^{\circ}C$ to $+125^{\circ}C$, $V_{DD} = 5$ V, $V_{REF} = 5$ V (external), SCL Freq = 3.4 MHz, unless otherwise noted.

Parameter	Test Conditions	Min	Тур	Max	Unit
Total Harmonic Distortion	V _{IN} = 2.5 Vpp at 1 kHz		-72		dB
POWER SUPPLY REQUIREMENTS					
Power Down Mode (Wrong address selected)	High speed mode: SCL = 3.4 MHz		400		μΑ
	Fast mode: SCL = 400 kHz		150		μΑ
	Standard mode: SCL = 100 kHz		35		μΑ
Full Power Down	SCL, SDA pulled HIGH TA = -40° C to 85° C TA = -40° C to 125° C		400 400	3000 3500	nA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TIMING CHARACTERISTICS

Table 6. I²C TIMING

Parameter (Note 3)	Symbol	Conditions	Min	Max	Unit
Clock Frequency	f _{SCL}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	10	100 400 3.4 1.7	kHz kHz MHz MHz
Bus Free Time	t _{BUF}	Standard Mode Fast Mode	4.7 1.3		μs μs
Start Hold Time (Note 4)	t _{HD;STA}	Standard Mode Fast Mode High speed Mode	4.0 600 160		μs ns ns
SCL Low Time	t _{LOW}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	4.7 1.3 160 320		μs μs ns ns
SCL High Time	tніgн	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	4.0 600 60 120		μs ns ns ns
Start Setup Time	t _{SU;STA}	Standard Mode Fast Mode High speed Mode	4.7 600 160		μs ns ns
Data Setup Time (Note 5)	t _{SU;DAT}	Standard Mode Fast Mode High speed Mode	250 100 10		ns
Data Hold Time (Note 6)	thd;dat	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	0 0 0 0	3.45 0.9 70 150	μs μs ns ns
SCL Rise Time	t _{RCL}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	20+0.1C _B 10 20	1000 300 40 80	ns ns ns ns
SCL Rise Time (after repeated start)	t _{RCL1}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	20+0.1C _B 10 20	1000 300 80 160	ns ns ns ns
SCL Fall Time	^t FCL	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	20+0.1C _B 10 20	300 300 40 80	ns ns ns ns
SDA Rise Time	t _{RDA}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	20+0.1C _B 10 20	1000 300 80 160	ns ns ns ns
SDA Fall Time	t _{FDA}	Standard Mode Fast Mode High speed Mode (100 pF) High speed Mode (400 pF)	20+0.1C _B 10 20	300 300 80 160	ns ns ns ns
Stop Setup Time	t _{SU;STO}	Standard Mode Fast Mode High speed Mode	0.4 600 160		μs ns ns
Capacitive load	CB			400	pF

Guaranteed by design, but not production tested.
Time from 10% of SDA to 90% of SCL.
Time for 10% or 90% of SDA to 10% of SCL.
A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL.

Table 6. I²C TIMING Parameter (Note 3)

TYPICAL CHARACTERISTICS

 $T_{A} = +25^{\circ}C, V_{DD} = +2.7 \text{ V}, V_{REF} = \text{External } 2.5 \text{ V}, f_{SAMPLE} = 50 \text{ kHz}, \text{ unless otherwise stated}.$

_	_	 	 	 	 	

TYPICAL CHARACTERISTICS

 T_{A} = +25°C, V_{DD} = +2.7 V, V_{REF} = External 2.5 V, f_{SAMPLE} = 50 kHz, unless otherwise stated.

CIRCUIT INFORMATION

OPERATION

The NCD9830 is a low power successive approximation ADC with a built in 8 channel multiplexer and 8 bit resolution. The 8 bit resolution assures high noise immunity and fast digitization that makes this device suitable for medium to high speed applications. The device internal circuitry operates at speed higher than the conversion time of the device because of the binary algorithm used. The algorithm is based on approximating the input signal by comparing with successive analog signal generated from the built in DAC.

The device can be operated at supply voltages of 2.7 V and 5 V. The liberty of supply voltage variation must be used with appropriate reference voltage selection. The NCD9830 internal DAC can be configured with an externally (50 mV

5 V) supplied or an internally internally generated reference voltage of 2.5 V. However, to avail full dynamic range an external reference of 5 V must be used while operating the device at 5 V supply voltage. The internal 2.5 V reference voltage is sufficient for full dynamic range while operating the device at 2.7 V.

The value of each output bit is evaluated on the basis of output of the comparator. The converter requires N conversion periods to give N bit digital output of the input analog signal. The SAR register stores the digital equivalent bits of the input analog signal and can be read by the master device using an I^2C interface. The main building block of the device are

- i. Digital to Analog Converter
- ii. Comparator
- iii. Digital Logic

DIGITAL TO ANALOG CONVERTER

A charge scaling DAC is used due to its compatibility with the switch capacitor circuits. The DAC operation consists of two phases called acquisition phase and the conversion phase. The acquisition phase is analogous to sample and hold circuit while the conversion phase is the process of conversion of the internal digital word in to an analog output.

Acquisition phase: The top plates of all the capacitors on the array are connected to the ground and the bottom plates are connected to the applied voltage Vin. Thus there is a charge proportional to input voltage on the capacitor array. After acquisition the top and bottom plates are disconnected from their respective connections.

Figure 16. The Acquisition Phase of a Typical ADC

Conversion Phase: The conversion phase is administered by a two phase non overlapping clock with phases ϕ_1 and ϕ_2 respectively.

During ϕ_1 the bottom plates of all the capacitors are grounded i.e the top plates of all the capacitors are now Vin times higher than the ground. As the conversion process starts the digital c(t)14.5t5 1 Tf3.2769 0 871S**Q**T.8348periods to e the top p

MSB	6	5	4	3	2	1	0
SD	C2	C1	C0	PD1	PD0	х	х

Bit 7: SD this configures the type of input to be used. If set to 0 then the device performs a differential measurement. If 7:s a used. If set

INITIATING CONVERSIONS

Communication in Standard/Fast Mode

Communication in standard/fast mode corresponds to a clock speed of 100/400 kHz. The device address is sent over the bus followed by R/W set to 0. This is followed by the Command byte. If the Command byte is correct the device initiates the conversion cycle by turning on the converter circuit after it receives the channel selection bits (SD, C_2 - C_0) of the Command byte. After receiving the Command byte the NCD 9830 sends an acknowledge bit. The device is now ready to be read by the master.

SCALE 2:1

TSSOP-16 WB CASE 948F ISSUE B

DATE 19 OCT 2006

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi