

1.8 V Differential 2:1 M Inp t to 1.2 V/1.8 V 1:6 CML Clock/Data Fano t B ffer / **Translator**

Multi-Level Inputs w/ Internal Termination

MARKING DIAGRAM*

NB7V586M

*For additional marking information, refer to Application Note AND8002/D.

Ω

Ω

SIMPLIFIED LOGIC DIAGRAM

Features

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

 Ω

Figure 1. 32-Lead QFN Pinout (Top View)

Table 1. INPUT SELECT FUNCTION TABLE

SEL*	CLK Input Selected
0	IN0
1	IN1

Table 3. ATTRIBUTES

Characteristics		Value		
ESD Protection Human Body Model Machine Model		> 2 kV > 200 V		
Input Pullup Resistor (R _{PU})		75 kΩ		
Moisture Sensitivity (Note 3)		Level 1		
Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in		
Transistor Count		308		
Meets or exceeds JEDEC Spec E	IA/JESD78 IC Latchup Test	•		

^{3.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.0	V
V _{CCOx}	Positive Power Supply	GND = 0 V		3.0	V
V _{IO}	Input/Output Voltage	GND = 0 V	$-0.5 \le V_{IO} \le V_{CC} + 0.5$	-0.5 to $V_{CC} + 0.5$	V
V _{INPP}	Differential Input Voltage IN _x - IN _x			1.89	V
I _{IN}	Input Current Through R _T (50 Ω Resistor)			±40	mA
I _{OUT}	Output Current	Continuous Surge		34 40	mA
I _{VFREFAC}	V _{REFAC} Sink/Source Current			±1.5	mA
T _A	Operating Temperature Range			-40 to +85	С
T _{stg}	Storage Temperature Range			-65 to +150	С
θJA	Thermal Resistance (Junction–to–Ambient) (Note 4)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	C/W C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case) (Note 4)	Standard Board	QFN-32	12	C/W
T _{sol}	Wave Solder Pb-Free			265	С

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these

Table 5. DC CHARACTERISTICS – CML OUTPUT V_{CC} = 1.8 V $\pm 5\%$, V_{CCO1} = 1.2 V $\pm 5\%$ or 1.8 V $\pm 5\%$, V_{CCO2} = 1.2 V $\pm 5\%$ or 1.8 V $\pm 5\%$, V_{CCO3} = 1.2 V $\pm 5\%$ or 1.8 V $\pm 5\%$ or 1.

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	POWER SUPPLY CURRENT (Inputs and Outputs open)					
I _{CC}	Power Supply Current for V _{CC} Power Supply Current for VCCOx	(Inputs and Outputs Open) (Inputs and Outputs Open)		75 95	125 105	mA
CML OU	TPUTS (Note 6)					
V _{OH}	Output HIGH Voltage	V _{CC} = 1.8 V, VCCOx = 1.8 V V _{CC} = 1.8 V, VCCOx = 1.2 V	V _{CCOx} – 40 1760 1160	V _{CCOx} – 20 1780 1180	V _{CCOx} 1800 1200	mV

Table 6. AC CHARACTERISTICS $V_{CC} = 1.8 \text{ V} \pm 5\%$, $V_{CCO1} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO2} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, or $1.8 \text{ V} \pm 5\%$, or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$ or $1.8 \text{ V} \pm 5\%$, $V_{CCO3} = 1.2 \text{ V} \pm 5\%$, $V_{CCO3} = 1$

Characteristic		Тур	Max	Unit
Maximum Input Clock Frequency, V _{OUTPP} ≥ 200 mV	4.0	6.0		GHz
Maximum Operating Input Data Rate (PRBS23)	10			Gbps
Output Voltage Amplitude (See Figures 4, Note 15) $f_{in} \le 4.0 \text{ GHz}$	200	330		mV
٨	Maximum Input Clock Frequency, V _{OUTPP} ≥ 200 mV Maximum Operating Input Data Rate (PRBS23)	Maximum Input Clock Frequency, V _{OUTPP} ≥ 200 mV 4.0 Maximum Operating Input Data Rate (PRBS23) 10	Maximum Input Clock Frequency, $V_{OUTPP} \ge 200 \text{ mV}$ 4.0 6.0 Maximum Operating Input Data Rate (PRBS23) 10	Maximum Input Clock Frequency, V _{OUTPP} ≥ 200 mV 4.0 6.0 Maximum Operating Input Data Rate (PRBS23) 10

 t_{PLH}, t_{PHL} Propagation Delay to Output Differential @ 1 GHz, $IN_x/INmV$

Figure 6. Differential Input Driven Single-Ended

Figure 7. Differential Inputs Driven Differentially

Figure 8. V_{th} Diagram

Figure 9. $V_{\rm CMR}$ Diagram

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 23 OCT 2013

XXXXXXX XXXXXXX AWLYYWW• ■Free indicator, "G" or

RECOMMENDED

DIMENSION: MILLIMETERS

DOCUMENT NUMBER:	98AON20032D	

