The MC34025 series are high speed, fixed frequency, double-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, a wide bandwidth error amplifier, a high speed current sensing comparator, steering flip-flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs. Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering. The flexibility of this series allows it to be easily configured for either current mode or voltage mode control. #### **Features** - 50 ns Propagation Delay to Outputs - Dual High Current Totem Pole Outputs - Wide Bandwidth Error Amplifier - Fully-Latched Logic with Double Pulse Suppression - Latching PWM for Cycle–By–Cycle Current Limiting - Soft-Start Control with Latched Overcurrent Reset - Input Undervoltage Lockout with Hysteresis - Low Startup Current (500 μA Typ) - Internally Trimmed Reference with Undervoltage Lockout - 45% Maximum Duty Cycle (Externally Adjustable) - Precision Trimmed Oscillator - Voltage or Current Mode Operation to 1.0 MHz - Functionally Similar to the UC3825 - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Simplified Application #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | | |--|--|---------------------------|-------------------------|--| | Power Supply Voltage | Vcc | 30 | V | | | Output Driver Supply Voltage | Vc | 25 | V | | | Output Current, Source or Sink (Note 1) DC Pulsed (0.5 μs) | Io | 0.5
2.0 | А | | | Current Sense, Soft–Start, Ramp, and Error Amp Inputs | V _{in} | -0.3 to +7.0 | V | | | Error Amp Output and Soft-Start Sink Current | Io | 10 | mA | | | Clock and R _T Output Current | I _{co} | 5.0 | mA | | | Power Dissipation and Thermal Characteristics SO–16 Package (Case 751G) Maximum Power Dissipation @ T _A = +25°C Thermal Resistance, Junction–to–Air DIP Package (Case 648) Maximum Power Dissipation @ T _A = +25°C Thermal Resistance, Junction–to–Air | P _D
R _{θJA}
P _D
R _{θJA} | 862
145
1.25
100 | mW
°C/W
W
°C/W | | | Operating Junction Temperature | TJ | +150 | °C | | | Operating Ambient Temperature (Note 2) MC34025 MC33025 | T _A | 0 to +70
-40 to +105 | °C | | | Storage Temperature Range | T _{stg} | -55 to +150 | _ | | **ELECTRICAL CHARACTERISTICS** (V_{CC} = 15 V, R_T = 3.65 k Ω , C_T = 1.0 nF, for typical values T_A = +25°C, for min/max values T_A is the operating ambient temperature range that applies [Note 4], unless otherwise noted.) | V _{IO} I _{IB} I _{IO} A _{VOL} GBW | -
-
-
60
4.0 | -
0.6
0.1
95 | 15
3.0
1.0 | mV
μA
μA
dB | |--|--|--|--|--| | I _{IB} I _{IO} A _{VOL} | | 0.1
95 | 3.0 | μA
μA
dB | | I _{IO} | | 0.1
95 | | μA
dB | | A _{VOL} | | 95 | 1.0 | dB | | | | | - | 1 | | GBW | 4.0 | 0.2 | | | | | 10 | 8.3 | _ | MHz | | CMRR | 75 | 95 | - | dB | | PSRR | 85 | 110 | - | dB | | I _{Source}
I _{Sink} | 0.5
1.0 | 3.0
3.6 | -
- | mA | | ₩52₽.7 750
V _{OL} | =59 9 . 3 27.9 | .368 4.53 8.80
0.4 | 94 T 5 0 0 Tc(7
1.0 | 754 3.978 60 | | | PSRR I _{Source} I _{Sink} W520.7 75 | PSRR 85 I _{Source} 0.5 I _{Sink} 1.0 I/520.7 75 = 598.327.9 | PSRR 85 110 I _{Source} 0.5 3.0 I _{Sink} 1.0 3.6 I/S ₂ 0.7 75 =59 9.3 27.9 368 8.33 8.80 | PSRR 85 110 - I _{Source} 0.5 3.0 - I _{Sink} 1.0 3.6 - 1/520.7 75 = 599.327.9.3688.338.8094 T50 Tc(| Figure 2. Timing Resistor versus Oscillator Frequency Figure 19. Representative Block Diagram | If the voltage at this pin exceeds comparator is activated. This comparat in turn, causes the Soft– | s 1.4 V, the second tor sets a latch which, | | |---|---|--| #### PIN FUNCTION DESCRIPTION | Pin No. | | | |----------|---------------------------------|--| | DIP/SOIC | Function | Description | | 1 | Error Amp Inverting Input | This pin is usually used for feedback from the output of the power supply. | | 2 | Error Amp
Noninverting Input | This pin is used to provide a reference in which an error signal can be produced on the output of the error amp. Usually this is connected to V_{ref} , however an external reference can also be used. | | 3 | Error Amp Output | This pin is provided for compensating the error amp for poles and zeros encountered in the power supply system, mostly the output LC filter. | | 4 | Clock | This is a bidirectional pin used for synchronization. | | 5 | R _T | The value of R _T sets the charge current through timing Capacitor, C _T . | | 6 | C _T | In conjunction with R_T , the timing Capacitor sets the switching frequency. Because this part is a push–pull output, each output runs at one–half the frequency set at this pin. | | 7 | Ramp Input | For voltage mode operation this pin is connected to C_T . For current mode operation this pin is connected through a filter to the current sensing element. | | 8 | Soft-Start | A capacitor at this pin sets the Soft–Start time. | | 9 | Current
Limit/Shutdown | This pin has two functions. First, it provides cycle-by-cycle current limiting. Second, if the current is excessive, this pin will reinitiate a Soft-Start cycle. | | 10 | Ground | This pin is the ground for the control circuitry. | | 11 | Output A | This is a high current totem pole output. | | 12 | Power Ground | This is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. | | 13 | V _C | This is a separate power source connection for the outputs that is connected back to the power source input. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. | | 14 | Output B | This is a high current totem pole output. | | 15 | V _{CC} | This pin is the positive supply of the control IC. | | 16 | V _{ref} | This is a 5.1 V reference. It is usually connected to the noninverting input of the error amplifier. | In voltage mode operation, the control range on the output of the Error Amplifier from 0% to 90% duty cycle is from 2.25 V to 4.05 V. Figure 22. Voltage Mode Operation In current mode control, an RC filter should be placed at the ramp input to filter the leading edge spike caused by turn–on of a power MOSFET. Figure 23. Current Mode Operation Additional dead time can be added by the addition of a dead time resistor from V_{ref} to C_{T} . See text on oscillator section for more information. Figure 24. Dead Time Addition The sync pulse fed into the clock pin must be at least 3.9 V. R_T and C_T need to be set 10% slower than the sync frequency. This circuit is also used in voltage mode operation for master/slave operation. The clock signal would be coming from the master which is set at the desired operating frequency, while the slave is set 10% slower. Figure 25. External Clock Synchronization Figure 26. Resistive Current Sensing Figure 31. Synchronization Over Long Distances Figure 38. PC Board With Components (Top View) Figure 39. PC Board Without Components #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|------------------------|--------------------------| | MC33025DWG | SOIC-16WB
(Pb-Free) | 47 Units / Rail | | MC33025DWR2G | SOIC-16WB
(Pb-Free) | 1000 Units / Tape & Reel | | MC33025PG | PDIP-16
(Pb-Free) | 25 Units / Rail | | MC34025DWG | SOIC-16WB
(Pb-Free) | 47 Units / Rail | | MC34025DWR2G | SOIC-16WB
(Pb-Free) | 1000 Units / Tape & Reel | | MC34025PG | PDIP-16
(Pb-Free) | 25 Units / Rail | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. PDIP-16 CASE 648-08 ISSUE V DATE 22 APR 2015 STYLE 1: # GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package ^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " •", may or may not be present. SCALE 1:1 16 9 \frac{1}{1} \tag{1} \tag{1} \tag{2} \tag{1} \tag{2} \tag{2} \tag{3} \tag{5} #### GENERIC MARKING DIAGRAM*