5 V ECL +2 Divider

MC10EL32, MC100EL32

Description

The MC10EL/100EL32 is an integrated $\div 2$ divider. The differential clock inputs and the V_{BB} allow a differential, single-ended or AC coupled interface to the device. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flop will attain a random state; the reset allows for the synchronization of multiple EL32's in a system.

The 100 Series contains temperature compensation.

Features

- 510 ps Propagation Delay
- 3.0 GHz Toggle Frequency
- ESD Protection:
 - ◆ > 1 kV Human Body Model
 - ♦ > 100 V Machine Model
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 \text{ V}$ with $V_{EE} = 4.2 \text{ V}$ to 5.7 V
- Internal Input Pulldown Resistors on CLK(s) and R.
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity
 - ◆ Level 1 for SOIC 8 NB
 - For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V 0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 82 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

SOIC-8 NB D SUFFIX CASE 751-07

MARKING DIAGRAMS*

ППП

MC10EL32, MC100EL32

MC10EL32, MC100EL32

Table 3. 10EL SERIES PECL DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0 \text{ V}$ (Note 1))

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		25	30		25	30		25	30	mA
V _{OH}	Output HIGH Voltage (Note 2)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3200	3350	3050	3210	<u>-</u> '			<u>-</u> '	-

MC10EL32, MC100EL32

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques
 AN1406/D - Designing with PECL (ECL at +5.0 V)
 AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit
 AN1504/D - Metastability and the ECLinPS Family
 AN1568/D - Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

onsemi	onsemi	onsemi 	onsemi	onsemi onsemi	onsemi