3.3 V ECL ÷4 Divider

Description

The MC100LVEL33 is an integrated ÷4 divider. The LVEL is functionally equivalent to the EL33 and works from a 3.3 V supply.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple LVEL33's in a system.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V

Figure 1. Logic Diagram and Pinout Assignment

Table 1. PIN DESCRIPTION

PIN	FUNCTION
CLK*, CLK**	ECL Differential Clock Inputs
Q, Q	ECL Differential Data ÷4 Outputs
Reset*	ECL Asynch Reset
V_{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
1	

^{*} Pins will default LOW when open due to internal 75 $k\Omega$ resistor to $V_{\mbox{\footnotesize{EE}}}$

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8 to 0	V
V _I	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 to 0 -6 to 0	V
I _{out}	Output Current	Continuous Surge		50 100	mA
I_{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC		

^{**} Pins will default to 1/2 V_{CC} when open due to internal resistors: 75 k Ω to V_{EE} and 75 k Ω to V_{CC}

Table 3. LVPECL DC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}; V_{EE} = 0.0 \text{ V} \text{ (Note 1))}$

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		33	37		33	37		35	39	mA
V _{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 2)-	1470	1605	1745		<u>-</u> '	•	•	•	<u>.</u>	-

 $\textbf{Table 5. AC CHARACTERISTICS} \ (\text{V}_{CC} = 3.3 \ \text{V}; \ \text{V}_{EE} = 0.0 \ \text{V} \ \text{or} \ \text{V}_{CC} = 0.0 \ \text{V}; \ \text{V}_{EE} = -3.3 \ \text{V} \ (\text{Note 1}))$

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency	3.4			3.8	4.0		3.8			GHz
[†] PLH [†] PHL	Propagation Delay CLK to Q (Diff) CLK to Q (SE) Reset to Q	530 530	-	-	-	-	-		-	-	-

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note $\underline{\text{AND8020/D}}$ – Termination of ECL Logic Devices)

TSSOP 8 CASE 948R-02 ISSUE A

DATE 04/07/2000

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α					

