5 EC ÷2, ÷4/6 Co n r^{p C}

Description

The MC100EL38 is a low skew $\div 2$, $\div 4/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended ECL or, if positive power supplies are used, PECL input signal.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable $(\overline{\text{EN}})$ is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

The Phase_Out output will go HIGH for one clock cycle whenever the $\div 2$ and the $\div 4/6$ outputs are both transitioning from a LOW to a HIGH. This output allows for clock synchronization within the system.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple EL38s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EL38, the MR pin need not be exercised as the internal divider design ensures synchronization between the \div 2 and the \div 4/6 outputs of a single device.

- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection:
 - 2 kV Human Body Model
 - 100 V Machine Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 V$ with $V_{EE} = 4.2 V$ to 5.7 V
- Internal 75 kΩ Input Pulldown Resistors on CLK, EN, MR, and DIVSEL
- Q Output will Default LOW with Inputs Open or at $V_{\rm EE}$
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05

- Moisture Sensitivity Level: 3 (Pb-Free)
 - For Additional Information, see Application Note <u>AND8003/D</u>
- Flammability Rating:
 - UL 94 V 0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 388 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

 V_{CC} EN DIV_SEL CLK CLK V_{BB} Mik V_{CC} Phase_out Phase_of * All V_{CC} pins are tied together on the die.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout Assignment (Top View)

Table 1. PIN DESCRIPTION

Pin	Function
CLK, CLK	ECL Diff Clock Inputs
$Q_0, Q_{1;} \overline{Q_0}, \overline{Q_1}$	ECL Diff +2 Outputs
$Q_2, Q_{3;} \overline{Q_2}, \overline{Q_3}$	ECL Diff ÷4/6 Outputs
ĒN	ECL Sync Enable Input
MR	ECL Master Reset Input
DIVSEL	ECL Frequency Select Input
Phase_Out, Phase_Out	ECL Phase Sync Diff. Signal Output
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Table 2. FUNCTION TABLE

CLK	EN	MR	Function
Z	L	L	Divide
ZZ	H	L	Hold Q ₀₋₃
X	X	H	Reset Q ₀₋₃

Z = Low-to-High Transition

ZZ = High-to-Low Transition

X = Don't Care

DIVSEL	Q ₂ , Q ₃ OUTPUTS				
L	Divide by 4				
H	Divide by 6				

MAXIMUM RATINGS

Parameter	Condition 1	Condition 1 Condition 2		Unit
PECL Mode Power Supply	V _{EE} = 0 V		8	V
NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 6	V
Output Current	Continuous Surge		50 100	MA
V _{BB} Sink/Source			± 0.5	mA
Operating Temperature Range			-40 to +85	°C
Storage Temperature Range			-65 to +150	°C
Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB	90 60	°C/W
Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		50	60		50	60		54	65	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-	-	-	-

Table 5. 100EL SERIES NECL DC CHARACTERISTICS ($V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi