

Features

- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM324/LM324A: 3V~32V (or ±1.5 ~ 16V) LM2902/LM2902A: 3V~26V (or ±1.5V ~ 13V)
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to VCC -1.5V
- Power Drain Suitable for Battery Operation

Description

The LM324/LM324A, LM2902/LM2902A consist of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32

Electrical Characteristics

(VCC = 5.0V, VEE = GND, TA = 25°C, unless otherwise specified)

1_				LM324			LM2902			
Parameter	Symbol	Co	Conditions		Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio		V to V _{CC} -1.5V 1.4V, R _S = 0Ω	-	1.5	7.0	-	1.5	7.0	mV
Input Offset Current	lio	VCM = 0	V	-	3.0	50	-	3.0	50	nA
Input Bias Current	IBIAS	VcM = 0	V	-	40	250	-	40	250	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	VCC -1.5	0	-	VCC -1.5	V
Supply Current	Icc		/CC = 30V 2,VCC=26V)	-	1.0	3	-	1.0	3	mA
		RL = ∞,\	/CC = 5V	-	0.7	1.2	-	0.7	1.2	mA
Large Signal Voltage Gain	G∨		5V,RL=2kΩ 1V to 11V	25	100	-	25	100	-	V/mV
	Moun	Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	noter	R _L =10kΩ	27	28	-	23	24	-	V
	VO(L)	VCC = 5	V, RL=10kΩ	-	5	20	-	5	100	mV
Common-Mode Rejection Ratio	CMRR		-	65	75	-	50	75	-	dB
Power Supply Rejection Ratio	PSRR		-	65	100	-	50	100	-	dB
Channel Separation	cs	f = 1kHz (Note2)	to 20kHz	-	120	-	-	120	-	dB
Short Circuit to GND	Isc	VCC = 1	5V	-	40	60	-	40	60	mA
	ISOURCE		V, V _{I(-)} = 0V 5V, V _{O(P)} = 2V	20	40	-	20	40	-	mA
Output Current	ISINK	VI(+) = 0 VCC = 1: VO(P) =	,	10	13	-	10	13	-	mA
	ISINK	VI(+) = 0 VCC = 1: VO(R) =		12	45	-	-	-	-	μΑ
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Note:

^{1.} VCC=30V for LM324 , VCC=26V for LM2902

^{2.} This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified)

The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM324; and the -40°C $\le T_A \le +85^{\circ}C$ for the LM2902

Doromotor	Cumbal	Conditions	LM324			LM2902			Unit
Parameter	Symbol		Min.	Тур.	Max.	Min.	Тур.	Max.	Onit
Input Offset Voltage	VIO	$\begin{aligned} &\text{VICM} = \text{0V to VCC -1.5V} \\ &\text{VO(P)} = \text{1.4V}, \text{ RS} = \text{0}\Omega \\ &\text{(Note1)} \end{aligned}$	-	-	9.0	-	-	10.0	mV
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$	$Rs = 0\Omega$ (Note2)	-	7.0	-	-	7.0	-	μV/°C
Input Offset Current	lio	VCM = 0V	-	-	150	-	-	200	nAV

Note:

^{1.} VCC=30V for LM324 , VCC=26V for LM2902

^{2.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, $T_A = 25^{\circ}C$, unless otherwise specified)

Daramatar	Symbol Co	Canditions	LM324A			LM2902A			l lmi4
Parameter		Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	V								

Note:

- 1. VCC=30V for LM324A; VCC=26V for LM2902A
- 2. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified) The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM324A ; and the -40°C $\le T_A \le +85^{\circ}C$

Typical Performance Characteristics

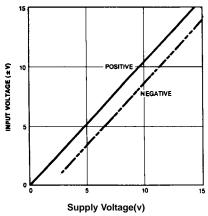


Figure 1. Input Voltage Range vs Supply Voltage

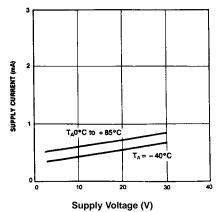


Figure 3. Supply Current vs Supply Voltage

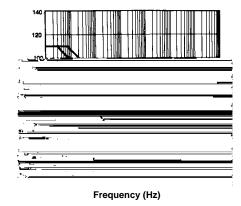


Figure 5. Open Loop Frequency Response

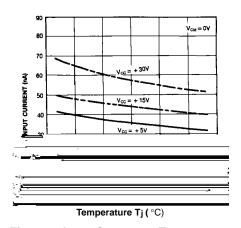


Figure 2. Input Current vs Temperature

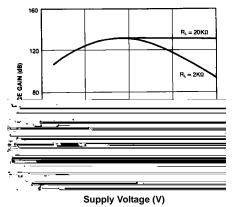


Figure 4. Voltage Gain vs Supply Voltage

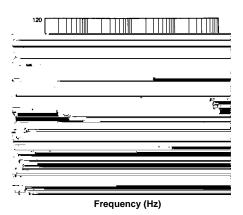
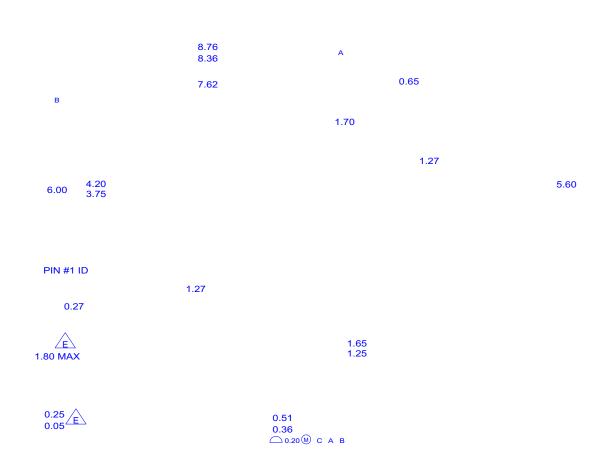



Figure 6. Common mode Rejection Ratio

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
LM324N	14-DIP	
LM324AN	14-011	0 ~ +70°C
LM324M	14-SOP	0 ~ +10 C
LM324AM	14-301	
LM2902N	14-DIP	
LM2902M	14-SOP	-40 ~ +85°C
LM2902AM	14-301	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

