AFC \ I

\C898249A H

Overview

This LSI is Closed Auto Focus control LSI equipped with hall sensor. It consists of 1 system of feedback circuit and constant current driver. It has also a built in EEPROM and temperature sensor.

Features

Built in Equalizer Circuit Using Digital Operation

- AF Control Equalizer Circuit
- Any Coefficient can be Specified by 2 wire Serial I/F (TWIF)
- 2 wire Serial Interface

(The Communication Protocol is Compatible with I²C)

• 4 Selectable Slave Addresses

50h(W)/51h(R), 53h(R)

74h(W)/75h(R), 77h(R)

E8h(W)/E9h(R), EBh(R)

E4h(W)/E5h(R), E7h(R) factory configured

Right Side Addresses are Used at the Access of Built in EEPROM

Built in A/D Converter

Built in D/A Converter

- Hall Offset
- Constant Current Bias

Built in Hall Sensor

◆ Si Hall Sensor

Built in EEPROM

• 64 Byte (16 Byte / Page)

Built in OSC

Built in Constant Current Driver

◆ 150 mA

Package

• WLCSP 6 pin (2 x 3 Pin), Thickness Max 0.29 mm, with Backside Coat

Supply Voltage

249AXH ALYWW

249AXH = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]			
LC898249AXHTBG	WLCSP6	4,000 / Tape & Reel			

†For information on tape and reel specifications,

PIN DESCRIPTION

Table 1. PIN DESCRIPTION

Pin Name	Description
I	Input
Р	Power Supply, GND
NC	Not Connect
0	Output
В	Bidirection

2 wire serial interface

SCL Ι 2 wire serial interface clock pin SDA 2 wire serial interface data pin В

Driver interface

OUT1 O Driver output (to Actuator) OUT2 O Driver output (to Actuator)

Power supply pin

VDD P Power Supply

GND VSS P

*Process when pins are not used

PIN TYPE "O" – Ensure that it is set to OPEN. PIN TYPE "I" – OPEN is inhibited. Ensure that it is connected to the VDD or VSS even when it is unused.

(Please contact ON Semiconductor for more information about selection of VDD or VSS.)

PIN TYPE "B" - If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.

PIN LAYOUT

Table 2. PIN LAYOUT

Circuit Name	Number of PINs
Driver	2
Power	2

BLOCK DIAGRAM

_ _	2-Wire Serial I/F

HALL ELEMENT POSITION

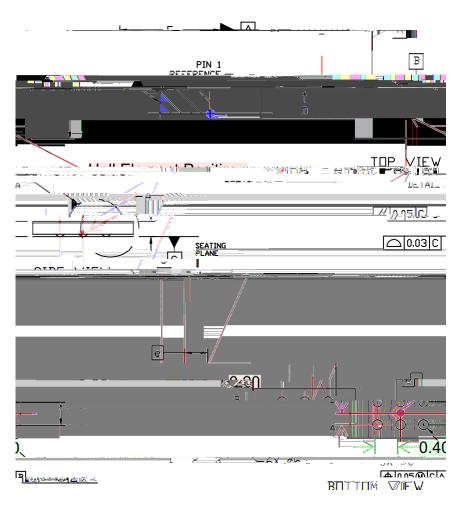


Figure 3. Hall Element Position

ELECTRICAL CHARACTERISTICS

Table 3. ABSOLUTE MAXIMUM RATINGS (VSS = 0 V)

Symbol	ltem	Condition	Rating	Unit
V _{DD} 33 max	Supply voltage	Ta ≤ 25°C	-0.3~4.6	V
V _I 33,V _O 33	Input/output voltage	Ta ≤ 25°C	-0.3~V _{DD} 33 + 0.3	V
Tstg	Storage ambient temperature		-55~125	°C
Topr	Operating ambient temperature		-30~70	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ACCEPTABLE OPERATION RANGE (Ta = $-30\sim70^{\circ}$ C, VSS = 0 V, 3 V power supply (VDD))

Symbol	ltem	Min	Тур	Max	Unit
V _{DD} 33	Supply voltage	2.6	2.8	3.3	V
V _{IN}	Input voltage range	0	-	$V_{DD}33$	V

Table 5. DC CHARACTERISTICS (Input / output level at VSS = 0 V, VDD = 2.6 V~3.3V, Ta = -30~70°C)

Symbol	Item	Condition	Min	Тур	Max	Unit	Applicable Pins
VIH	High-level input voltage	CMOS compliant schmitt	1.4	-	_	V	SCL, SDA
VIL	Low-level input voltage		-	-	0.4	V	
VOL	Low-level output voltage	IOL = 2 mA	-	1	0.2	V	SDA

Table 6. DRIVER OUTPUT (OUT1, OUT2) (VSS = 0 V, VDD = 2.8 V, Ta = 25°C)

Symbol	Item	Condition	Min	Тур	Max	Unit	Applicable Pins
Ifull	Maximum current		142.5	150	157.5	mA	OUT1, OUT2

Table 7. NON-VOLATILE MEMORY CHARACTERISTICS

Symbol	Item	Condition	Min	Тур	Max	Unit	Applicable Circuit
EN	Endurance		_	_	1000	Cycles	EEPROM
RT	Data retention		10	_	_	Years	
tWT	Write time		_	-	20	ms	

AC CHARACTERISTICS

VDD Supply Timing

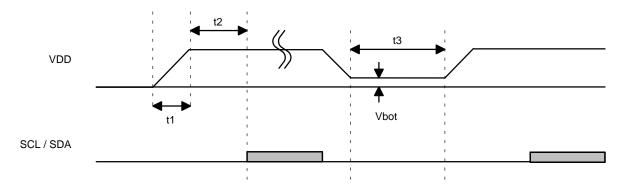
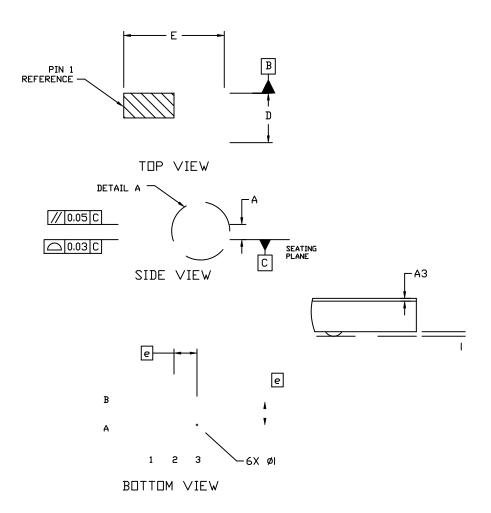



Table 9. ELECTRICAL CHARACTERISTICS FOR 2-WIRE SERIAL INTERFACE (AC CHARACTERISTICS)

		Pin	F	ast-mode)	Fas	st-mode P	lus		
Symbol	ltem	Name	Min	Тур	Max	Min	Тур	Max	Unit	
FSCL	SCL clock frequency	SCL	_	_	400	_	-	1000	kHz	
tHD,STA	START condition hold time	SCL SDA	0.6	-	-	0.26	-	-	μS	
tLOW	SCL clock Low period	SCL	1.3	_	-	0.5	-	-	μS	
tHIGH	SCL clock High period	SCL	0.6	_	-	0.26	-	-	μS	
tSU,STA	Setup time for repetition START condition	SCL SDA	0.6	-	-	0.26	-	-	μS	
tHD,DAT	Data hold time	SCL SDA	0 (Note 1)	-	0.9	0 (Note 1)	-	-	μS	
tSU,DAT	Data setup time	SCL SDA	100	-	-	50	-	-	ns	
tr	SDA, SCL rising time	SCL SDA	_	-	300	-	-	120	ns	
tf	SDA, SCL falling time	SCL SDA	-	-	300	-	-	120	ns	
tSU,STO	STOP condition setup time	SCL SDA	0.6	-	-	0.26	-	-	μS	
tBUF	Bus free time between STOP and START	SCL SDA	1.3	-	_	0.5	-	-	μS	

^{1.} This LSI is designed for a condition with typ. 20 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

