

S BU-D T

FXLP34

Description

The FXLP34 is a single translator with two separate supply voltages: V_{CC1} for input translation voltages and V_{CC} for output translation voltages. The FXLP34 is part of **onsemi**'s Ultra Low Power (ULP) series of products. This device operates with VCC values from 1.0 V to 3.6 V, and is intended for use in portable applications that require ultra low power consumption.

The internal circuit is composed of a minimum of buffer stages, to enable ultra low dynamic power.

The FXLP34 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.0 V to 3.6 V V_{CC} Supply Voltage
- Converts Any Voltage (1.0 V to 3.6 V) to (1.0 V to 3.6 V)
- 4.6V Tolerant Inputs and Outputs
- t_{PD}:
 - 4 ns Typical for 3.0 V to 3.6 V V_{CC}
- Power-Off High Impedance Inputs and Outputs
- Static Drive (I_{OH}/I_{OL}):
 - ★ ±2.6 mA at 3.00 V V_{CC}
- Uses Proprietary Quiet Series Noise / EMI Reduction Circuitry
- Ultra-Small MicroPak™ Leadless Packages
- Ultra-Low Dynamic Power
- These are Pb–Free Devices

MARKING DIAGRAM

SIP6 1.45X1.0 CASE 127EB

UDFN6 1.0X1.0, 0.35P CASE 517DP

SC-88A (SC-70 5 Lead), 1.25x2 CASE 419AC-01

X3, X34 = Device Code
M = Assembly Operation Month

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parame	eter	Min	Max	Unit
Vcc, Vcc1	Supply Voltage		-0.5	+4.6	V
Vin	DC Input Voltage	-0.5	+4.6	V	
Vout	DC Output Voltage	HIGH or LOW State (Note 1)	-0.5	V _{CC} + 0.5 V	V
		V _{CC} = 0 V	-0.5	+4.6	1
lıĸ	DC Input Diode Current V _{IN} < 0		-	-50	mA
Іок	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
		Vout > Vcc	-	+50	1
IOH/IOL	DC Output Source/Sink Current		_	±50	mA
Icc or Ignd	DC V _{CC} or Ground Current per Supply	/ Pin	-	±100	mA
Тѕтс	Storage Temperature Range		-65	150	°C
P _D	Power Dissipation at +85°C	SC70-6	-	180	mW
		MicroPak™-6	-	130	1
		MicroPak2™-6	-	120	1
ESD	Human Body Model, JEDEC:JESD22-A114		-	4000	V
	Charge Device Model, JEDEC:JESD2	2-C101	-	2000	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_O Absolute Maximum Rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc, Vcc1	Supply Voltage		1.0	3.6	V

ELECTRICAL CHARACTERISTIICS

					T _A = -	+25°C	$T_A = -40$	to 85°C	
Symbol	Parameter	Condition	V _{CC} (V)	V _{CC1} (V)	Min	Max	Min	Max	Unit
V _{IH}	HIGH		1.0 to 3.6	1.0	0.65 x V _{CCI}	-	0.65 x V _{CCI}	-	V
	Level Input			$1.10 \le V_{CC1} \le 1.30$	0.65 x V _{CCI}	_	0.65 x V _{CCI}	_	
	(V _{CC1})			1.40 ≤ V _{CC1} ≤ 1.60	0.65 x V _{CCI}	_	0.65 x V _{CCI}	_	
				$1.65 \le V_{CC1} \le 1.95$	0.65 x V _{CCI}	_	0.65 x V _{CCI}	_	
				$2.30 \le V_{CC1} \le 2.70$	1.6	-	1.6	-	
				$3.00 \le V_{CC1} \le 3.60$	2.1	-	2.1	-	
V_{IL}	LOW		1.0 to 3.6	1.0	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	V
	Level Input			$1.10 \le V_{CC1} \le 1.30$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
	(V _{CC1})			$1.40 \le V_{CC1} \le 1.60$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
				$1.65 \le V_{CC1} \le 1.95$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
				$2.30 \le V_{CC1} \le 2.70$	-	0.7	-	0.7	
				$3.00 \le V_{CC1} \le 3.60$	-	0.9	-	0.9	
V _{OH}	HIGH	I _{OH} = -20 μA	1.0	1.0 to 3.6	V _{CC} – 0.1	-	V _{CC} – 0.1	-	V
	Level Output		1.10 ≤ V _{CC1} ≤ 1.30		V _{CC} – 0.1	-	V _{CC} – 0.1	_	
	(V _{CC})		1.40 ≤ V _{CC1} ≤ 1.60		V _{CC} – 0.1	-	V _{CC} – 0.1	-	
			1.65 ≤ V _{CC1} ≤ 1.95		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
			2.30 ≤ V _{CC1} ≤ 2.70		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
			3.00 ≤ V _{CC1} ≤ 3.60	1	V _{CC} - 0.1	_	V _{CC} – 0.1	_	
		$I_{OH} = -0.5 \text{ mA}$	1.10 ≤ V _{CC1} ≤ 1.30	1.0 to 3.6	0.75 x V _{CC}	_	0.70 x V _{CC}	_	
		I _{OH} = -1.0 mA	1.40 ≤ V _{CC1} ≤ 1.60	1	1.07	_	0.99	_	
		I _{OH} = -1.5 mA	1.65 ≤ V _{CC1} ≤ 1.95	1	1.24	_	1.22	_	
		$I_{OH} = -2.1 \text{ mA}$	2.30 ≤ V _{CC1} ≤ 2.70		1.95	_	1.87	_	
		$I_{OH} = -2.6 \text{ mA}$	3.00 ≤ V _{CC1} ≤ 3.60		2.61	_	2.55	-	
V _{OL}	LOW	I _{OL} = 20 μA	1.0	1.0 to 3.6	_	0.1	_	0.1	V
	Level Output		1.10 ≤ V _{CC1} ≤ 1.30		_	0.1	_	0.1	
	(V _{CC})		1.40 ≤ V _{CC1} ≤ 1.60		_	0.1	_	0.1	
			1.65 ≤ V _{CC1} ≤ 1.95		_	0.1	_	0.1	
			2.30 ≤ V _{CC1} ≤ 2.70		_	0.1	_	0.1	
		I _{OL} = 0.5 mA	1.10 ≤ V _{CC1} ≤ 1.30	1.0 to 3.6	_	0.30 x V _{CC}	_	0.30 x V _{CC}	
		I _{OL} = 1.0 mA	1.40 ≤ V _{CC1} ≤ 1.60		_	0.31	_	0.37	
		I _{OL} = 1.5 mA	1.65 ≤ V _{CC1} ≤ 1.95		_	0.31	_	0.35	
		I _{OL} = 2.1 mA	2.30 ≤ V _{CC1} ≤ 2.70		_	0.31	_	0.33	
		I _{OL} = 2.6 mA	3.00 ≤ V _{CC1} ≤ 3.60	1	_	0.31	_	0.33	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 3.60$		1.0 to 3.6	-	±0.1	-	±1.0	μΑ
l _{OFF}	Power Off Leakage Current	0 ≤ (V _{IN} , V _O) ≤ 3.60	0	0	-	1.0	-	5.0	μΑ

 I_{CC}

AC ELECTRICAL CHARACTERISTIICS (continued)

				•	Γ _A = +25°(C	$T_A = -40$	to 85°C				
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	Figure		
t _{PHL} ,		C _L = 15 pF,	1.0	-	28.0	_	_	_	ns	Figure 3, Figure 4		
t _{PLH}			1.10 to 1.30	16.0	27.0	43.0	12.0	44.8				
			1.40 to 1.60	15.0	26.0	41.6	11.0	43.6				
			1.65 to 1.95	14.0	25.0	40.9	10.0	47.9				
			2.30 to 2.70	13.0	24.0	40.5	9.0	47.5				
			3.00 to 3.60	12.0	23.0	40.4	8.0	41.4				
t _{PHL} ,	t_{PLH} , Propagation Delay Output Translation V_{CC} (V) = 1.2			C _L = 15 pF,	1.0	_	19.0	-	_	_	ns	Figure 3,
t _{PLH}		$R_L = 1 M\Omega$	1.10 to 1.30	9.0	16.0	24.6	8.0	43.1		Figure 4		
			1.40 to 1.60	8.5	15.0	23.1	7.5	42.2				
			1.65 to 1.95	8.0	14.0	22.4	7.0	31.4				
			2.30 to 2.70	7.5	13.0	21.8	6.5	30.7				
			3.00 to 3.60	7.0	13.0	21.6	6.0	30.5				
t _{PHL} ,	Propagation Delay	C _L = 15 pF,	1.0	-	15.0	-	_	_	ns	Figure 3,		
t _{PLH}	Output Translation V _{CC} (V) = 1.5	$R_L = 1 M\Omega$	1.10 to 1.30	6.0	12.0	17.2	5.5	21.5		Figure 4		
	100(1)		1.40 to 1.60	5.8	11.0	15.7	5.0	20.3				
			1.65 to 1.95	5.51	•	<u>-</u>	•	•				
			•	•								

AC ELECTRICAL CHARACTERISTIICS (continued)

				T _A = +25°C		$T_A = -40$	to 85°C			
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	Figure
t _{PHL} , t _{PLH}	Propagation Delay Output Translation V _{CC} V									

Translator Power-up Sequence Recommendations

To ensure that the system does not experience unnecessary I_{CC} current draw, bus contention, or oscillations during power—up; adhere to the following guidelines. This device is designed with the output pin(s) supplied by V_{CC} and the input pin(s) supplied by V_{CC1} . The first recommendation is to begin by powering up the input side of the device with V_{CC1} . The Input pin(s) should be ramped with or ahead of V_{CC1} or held LOW. This guards against bus contentions and oscillations as all inputs and the

input V_{CC1} are powered at the same time. The output V_{CC} can then be powered to the target voltage level to which the device will translate. The output pin(s) then translate to logic levels dictated by the output V_{CC} levels.

Upon completion of these steps, the device can be configured for the desired operation. Following these steps helps prevent possible damage to the translator device as well as other system components

AC Loadings and Waveforms

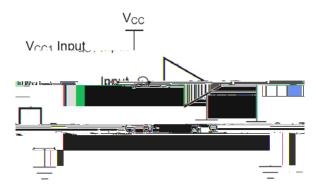


Figure 3. AC Test Circuit

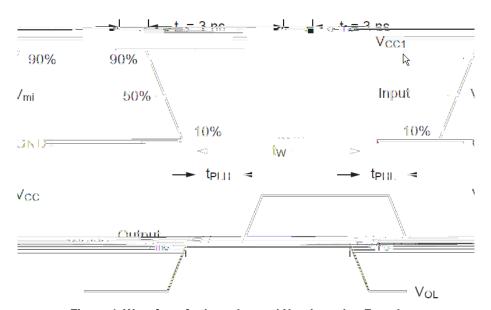
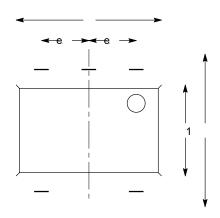


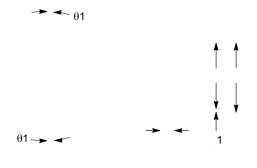
Figure 4. Wa ef mf In e ing and N n-In e ing F nc i n

Table 1. AC LOAD TABLE

	V _{CC}						
Symbol	3.3 V ±0.3 V	2.5 V ±0.2 V	1.8 V ±0.15 V	1.5 V ±0.10 V	1.2 V ±0.10 V	1.0 V	
V _{mi}	1.5V	V _{CC1} /2					
V _{mo}	1.5V	V _{CC} /2					


ORDERING INFORMATION

Part Number	Top Mark	Package Type	Shipping [†]
FXLP34P5X	X34	5-Lead SC70, EIAJ SC-88a, 1.25 mm Wide (Pb-Free)	3000 / Tape & Reel
FXLP34L6X	34L6X X3 SIP6, 6–Lead MicroPak, 1.00 mm Wide (Pb–Free)		5000 / Tape & Reel
FXLP34FHX	Х3	UDFN6, 6-Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch (Pb-Free)	5000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

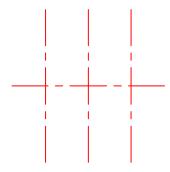
MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SC 88A (SC 70 5 Lead), 1.25x2

TOP VIEW

SIDE VIEW

END VIEW


- (1) . If $_{i}$ le $_{i}$, $_{i}$, $_{i}$, a. e. $_{i}$. If $_{i}$ le e. $_{i}$, $_{i}$, $_{i}$ e. ee. $_{i}$. () $_{i}$, $_{i}$, $_{i}$ e. $_{i}$, $_{i}$, $_{i}$.

UDFN6 1.0X1.0, 0.35PCASE 517DP ISSUE O

DATE 31 AUG 2016

э.

