FUSB3301

USB T e-C Con olle fo Mobile Cha ge and Po e Ada e

Description

The FUSB3301 is an autonomous Source only Type–C controller optimized for mobile chargers and power adapters. It broadcasts the available current of the charger over CC1/CC2 using the USB Type–C standard and prevents VBUS from being asserted until a valid connection has been verified. It can be used for up to 15 W charging using Type–C protocols. The FUSB3301 has very low standby power consumption and is packaged in a 0.5 mm pitch MLP to accommodate power adapter PCBs.

Features

- Fully Autonomous Type–C Controller
- Supports Type–C Version 1.2
- Fixed Source Mode
- Low Standby Power: $I_{CC} = 5 \mu A$ (Typical)
- VBUS Switch Control
- Advertises Three Standard Type–C VBUS Current Levels (900 mA, 1.5 A, 3.0 A)
- 2 kV HBM ESD Protection
- 10 Lead MLP Package
- V_{DD} Operating Range, 3.0 V 5.5 V

Applications

- USB Type–C Power Ports
- Mobile Chargers
- Power Adapters
- AC–DC Adapters

www.onsemi.com

WDFN 10 LEAD CASE 511DM

MARKING DIAGRAM

NZ

NZ = Specific Device Marking

1

FUSB3301

Table 2. CONNECTION STATE TABLE

CC1	CC2	SW	Description
NC	NC	HiZ	No Attach
Rd	NC	L	Attach to UFP (Sink)
NC	Rd	L	Attach to UFP (Sink)
Rd	Rd	HiZ	No Attach
Ra	NC	HiZ	No Attach
NC	Ra	HiZ	No Attach
Ra	Ra	HiZ	No Attach

Host Current

Table 3. HOST INPUT TRUTH TABLE

HOST2

Table 4. ABSOLUTE MAXIMUM RATINGS

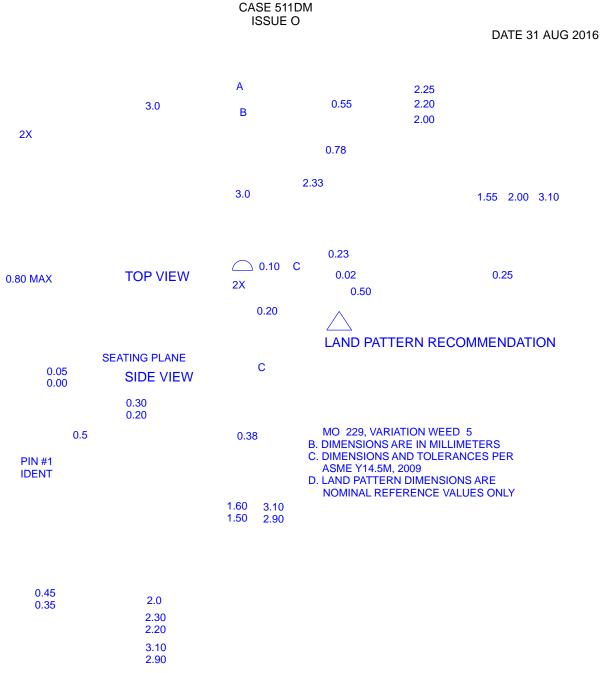
Symbol	Parameter			Min	Max	Unit
V _{DD}	Supply Voltage			-0.5	6.0	V
V _{CCX}	CC pins when configured as HOST			-0.5	6.0	V
T _{STORAGE}	Storage Temperature Range			-65	+150	°C
Τ _J	Maximum Junction Temperature				+150	°C
ΤL	Lead Temperature (Soldering, 10 seconds)				+260	°C
ESD	IEC 61000-4-2 System ESD	Connector Pins (VBUS, CC1 & CC2)	Air Gap	15		kV
			Contact	8		
	Human Body Model, JEDEC JESD22–A114 Connector Pins (VBUS, CC1 and CC2)		4		kV	
		Others		2		
	Charged Device Model, JEDEC All Pins JESD22–C101		1		kV	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Supply Voltage	3.0	5.0	5.5	V
T _A	Operating Ambient Temperature			+85	°C
TJ	Operating Junction Temperature			+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.


Table 6. DC AND TRANSIENT CHARACTERISTICS All typical values are at TA=25°C unless otherwise specified.

		T _A = -40 to +85°C T _J =-40 to +125°C			
Symbol	Parameter	Min	Тур	Max	Unit
I _{80_CCX}	Source 80 µA CC Current (Default) HOST2=VDD, HOST1=VDD	64	80	96	μΑ
I _{180_CCX}	Source 180 μA CC Current (1.5 A) HOST2=VDD, HOST1=GND or HOST2=GND, HOST1=VDD	166	180	194	μΑ
I _{330_CCX}	Source 330 µA CC Current (3 A) HOST2=GND, HOST1=GND	304	330	356	μΑ
ZOPEN	CC Resistance for Disabled State	126			kΩ
vRa-SRCdef	Ra Detection Threshold for CC Pin for Source for Default Current on VBUS	0.15	0.20	0.25	V

FUSB3301

Table 7. CURRENT CONSUMPTION

				T _A = -40 to +85°C T _J =-40 to +125°C			
Symbol	Parameter	Conditions	V _{DD} (V)	Min	Тур	Max	Unit
Istby	Unattached Source	Nothing attached, Host Pins = VDD, GND, Float.	3.0 to 5.5		5	20	μΑ
lattach	Attach Current (Less Host Current)	Attached, Host Pins=VDD, GND, Float.	3.0 to 5.5		10T		

WDFN10 3x3, 0.5P

BOTTOM VIEW

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi