:G8A\$(*)F9ž':G8A\$)*)F9ž':G8A\$+*)&F9 ;fYYb'AcXY'DckYf'Gk]hW\'

:YUhifYg

- > Internal Avalanche-Rugged SenseFET
- Advanced Burst-Mode Operation Consumes Under 1W at 240V_{AC} & 0.5W load
- > Precision Fixed Operating Frequency (66kHz)
- > Internal Start-up Circuit
- > Improved Pulse-by-Pulse Current Limiting
- Over-Voltage Protection (OVP)
- Overload Protection (OLP)
- > Internal Thermal Shutdown Function (TSD)
- > Auto-Restart Mode
- > Under-Voltage Lockout (UVLO) with hysteresis
- > Low Operating Current (2.5mA)
- > Built-in Soft-Start

5dd`]WUh]cbg

- > SMPS for LCD monitor and STB
- > Adaptor

8YgWf]dh]cb

The FSDM0465RE, FSDM0565RE and FSDM07652RE are an integrated Pulse Width Modulator (PWM) and SenseFET specifically designed for high-performance offline Switch Mode Power Supplies (SMPS) with minimal external components. This device is an integrated high-voltage power-switching regulator that combines an avalanche-rugged SenseFET with a :][i fY`%"'Hmd]WU``:`mVUW_`5dd`]WUh]cb

Cihdih'DckYf'HUV`Y

BchYg.

- 2. Typical continuous power in a non-ventilated enclosed adapter measured at 50°C ambient.
- 3. Maximum practical continuous power in an open-frame design at 50°C ambient.

4. 230VJO3UB6HBAAqt6Ea%Ã4±BE69d10UGHLX

:G8A\$(*)F9ž:G8A\$)*)F9ž:G8A\$+*)&F9``;f

FSDM0465RE, FSDM0565RE, FSDM07652RE — Green Mode Power Switch

5Vgc`ihY'AUI]aia'FUh]b[g

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. $T_A = 25^{\circ}C$, unless otherwise specified.

Gm a Vc`	DU	lfU a YhYf	JU`iY	l b] h	
BV _{DSS}	Drain Source Breakdown	Voltage	650	V	
V _{str}	Max. Voltage at Vstart pin	650	V		
	Drain Current Pulsed ⁽⁵⁾	FSDM0465RE	T _C =25°C	9.6	
I _{DM}		FSDM0565RE	T _C =25°C	11	A _{DC}
		FSDM07652RE	T _C =25°C	15	
		FSDM0465RE	T _C =25°C	2.2	
		FSDIVI0403RE	T _C =100°C	1.4	
I	Continuous Drain Current		T _C =25°C	2.8	٨
Ι _D	Continuous Drain Current	FSDIVIUS0SRE	T _C =100°C	1.7	A
			T _C =25°C	3.8	
		FSDM07652RE	T _C =100°C	2.4	
			FSDM0465RE		
E _{AS}	Single Pulsed Avalanche	Energy ⁽⁶⁾	FSDM0565RE	190	mJ
	FSDM07652R			370	
V _{CC}	Supply Voltage		20	V	
V _{FB}	Input Voltage Range		-0.3 to V _{CC}	V	
P _D (Watt H/S)	Total Power Dissipation (T	_C =25°C)	45	W	
Τ _J	Operating Junction Tempe	erature	Internally limited	°C	
Τ _Α	Operating Ambient Tempe	erature	-25 to +85	°C	
T _{STG}	Storage Temperature		-55 to +150	°C	
	ESD Capability, HBM Mod (All pins except V_{str} and F		2.0 (GND-V _{str} /V _{FB} =1.5kV)	kV	
	ESD Capability, Machine I (All pins except V _{str} and F		300 (GND-V _{str} /V _{FB} =225V)	V	

BchYg.

5. Repetitive rating: Pulse width limited by maximum junction temperature.

6. L=14mH, starting T_J =25°C.

H\Yf a U``= a dYXUbWY

 $T_A=25^{\circ}C$, unless otherwise specified.

Gm a Vc`	DUfU a YhYf	JU`iY	l b]h
$\theta_{JA}^{(7)}$	Junction-to-Ambient Thermal Resistance	49.90	°C/W
$\theta_{\rm JC}^{(8)}$	Junction-to-Case Thermal Resistance	2.78	°C/W

BchYg.

7. Free-standing, with no heat-sink, under natural convection.

8. Infinite cooling condition - refer to the SEMI G30-88.

9`YWhf]WU``7 \UfUWhYf]gh]Wg[`]

 T_A = 25°C unless otherwise specified.

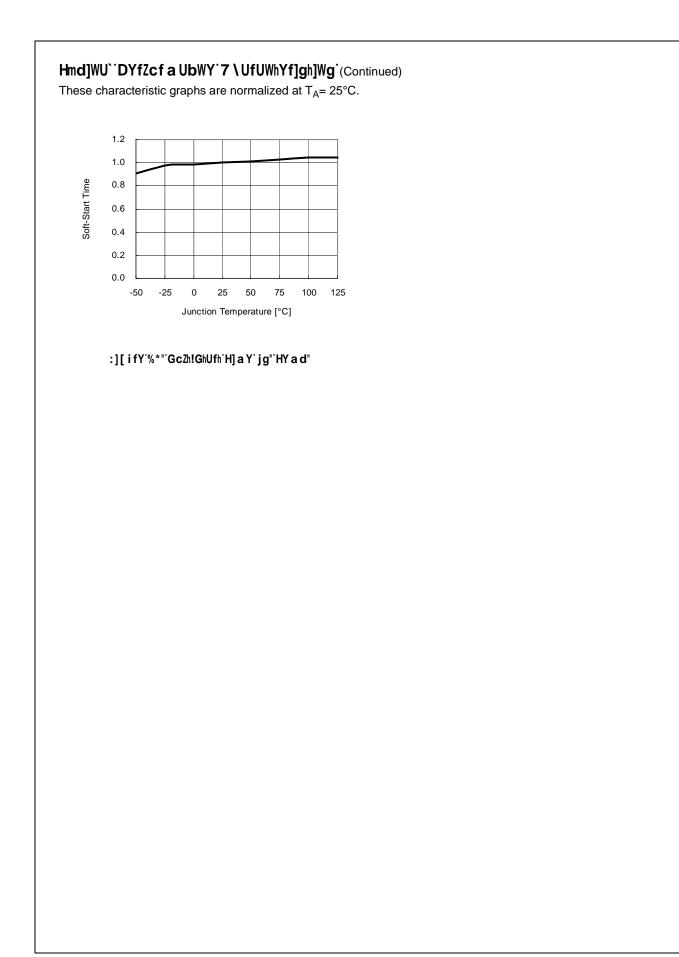
Gm a Vc`	DUfU a YhYf		7cbX]h]cb	A]b"	Hmd"	AUI"	l b] h
GYbgY:9H	I`G97H=CB`						
		FSDM0465RE	$V_{DS} = 650V, V_{GS} = 0V$ $V_{DS} = 520V, V_{GS} = 0V, T_{C} = 125^{\circ}C$			250 250	
н.,	Zero Gate Voltage	FSDM0565RE	$V_{\rm DS} = 650 V, V_{\rm GS} = 0 V$			500	· · A
IDSS	Drain Current	FSDIMUDODRE	$V_{DS} = 520V, V_{GS} = 0V, T_{C} = 125^{\circ}C$			500	μA
		FSDM07652RE	$V_{DS} = 650V, V_{GS} = 0V$			500	
		FODINIOTOGENE	$V_{DS} = 520V, V_{GS} = 0V, T_{C} = 125^{\circ}C$			500	
	Of the Design Optimore	FSDM0465RE			2.20	2.60	
R _{DS(ON)}	Static Drain Source on Resistance ⁽⁹⁾	FSDM0565RE	$V_{GS} = 10V, I_D = 2.5A$		1.76	2.20	Ω
		FSDM07652RE			1.40	1.60	
		FSDM0465RE			60		
C _{OSS}	Output Capacitance	FSDM0565RE	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		78		pF
		FSDM07652RE			100		
		FSDM0465RE			23		
t _{d(on)}	Turn-On Delay Time	FSDM0565RE	$V_{DD} = 325V, I_D = 5A$		22		ns
		FSDM07652RE			22		
		FSDM0465RE			20		
t _r	Rise Time	FSDM0565RE	$V_{DD} = 325V, I_{D} = 5A$		52		ns
		FSDM07652RE			60		
		FSDM0465RE			65		
t _{d(off)}	Turn-Off Delay Time	FSDM0565RE	V _{DD} = 325V, I _D = 5A		95		ns
		FSDM07652RE			115		
		FSDM0465RE			27		
t _f	Fall Time	FSDM0565RE	$V_{DD} = 325V, I_{D} = 5A$		50		ns
		FSDM07652RE			65		
7CBHFC@	Ĵ`G97H₌CB`						
fosc	Switching Frequency		V _{FB} = 3V	60	66	72	kHz
Δf_{STABLE}	Switching Frequency S	-	$13V \le V_{CC} \le 18V$	0	1	3	%
Δf_{OSC}	Switching Frequency V	√ariation ⁽¹⁰⁾	$-25^{\circ}C \leq T_A \leq 85^{\circ}C$	0	±5	±10	%
I _{FB}	Feedback Source Curr		$V_{FB} = GND$	0.7	0.9	1.1	mA
		FSDM0465RE		77	82	87	%
D_{MAX}	Maximum Duty Cycle	FSDM0565RE		77	82	87	%
		FSDM07652RE		75	80	85	%
р	Minimum Duty Cycle					0	%
D _{MIN}							

$_{A} = 25^{\circ}C$ unless	otherwise specified.						
Gm a Vc`	DUfU a YhY	f	7cbX]h]cb [`]	A]b"	Hmd"	AUI"	lb]
6 FGH'AC89'	G97H=CB [·]						
V _{BURH}							
9. Pulse test: Pu 0. These parame		teed at the design, a	re not tested in production	on.			
0. These parame 1. These parame		teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			
 9. Pulse test: Pu 0. These parame 1. These parame 	eters, although guaran eters indicate the induc	teed at the design, a ctor current.	re not tested in productio	on.			

:ibWh]cb	:G*A\$+*)FH7	:G8A\$I*)F9	:G8A\$I*)F9`5XjUbhU[Yg
Soft-Start			

Hmd]WU`	DYfZcf	a UbWY [·] 7	\UfUWhYf]gh]Wg
---------	--------	-----------------------	----------------

These characteristic graphs are normalized at $T_{A}\text{=}$ 25°C.


:][i fY`("`CdYfUh]b[`7 i ffYbh`jg"`HY a d"

:][ifY`)"``GhUfh`H\fYg\c`X`Jc`hU[Y`jg"`HYad"`

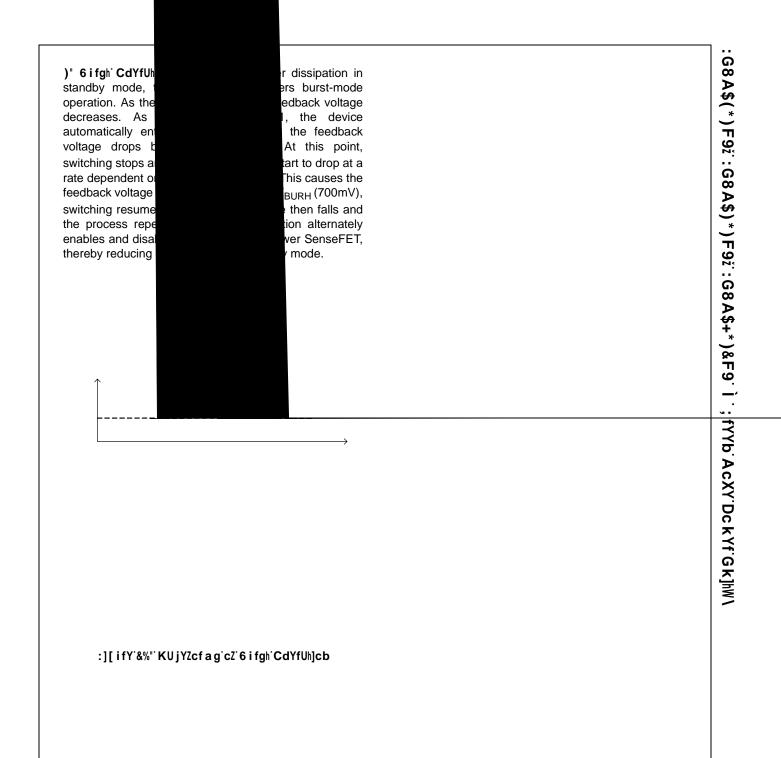
:][ifY`*"``Ghcd`H\fYg\c`X`Jc`hU[Y`jg"`HYad" :][ifY`+"`CdYfUh]b[`:fYeiYbWm`jg"`HYad"

Hmd]WU``DYfZcf a UbWY`7 \UfUWhYf]gh]Wg`(Continued)

These characteristic graphs are normalized at T_A = 25°C.

: i bWh]cbU``8YgWf]dh]cb

%" GhUfh! i d: previous In generations of Power Switches the $V_{\mbox{\scriptsize CC}}$ pin had an external startup resistor to the DC input voltage line. In this generation, the start-up resistor is replaced by an internal high-voltage current source. At start-up, the internal high-voltage current source supplies the internal bias and charges the external capacitor (C_{vcc}) connected to the V_{CC} pin, as illustrated in Figure 17. When V_{CC} reaches 12V, the FSDM0x65RE begins switching and the internal highcurrent disabled. voltage source is The FSDM0x65RE continues normal switching operation and the power is supplied from the auxiliary transformer winding unless V_{CC} goes below the stop voltage of 8V.


:][i fY'%+"`=bhYfbU``GhUfh! i d`7]fW i]h

&" :YYXVUW_'7cbhfc': FSDM0x65RE employs current-

:][ifY'%-"'5 ihc'FYghUfh'CdYfUh]cb

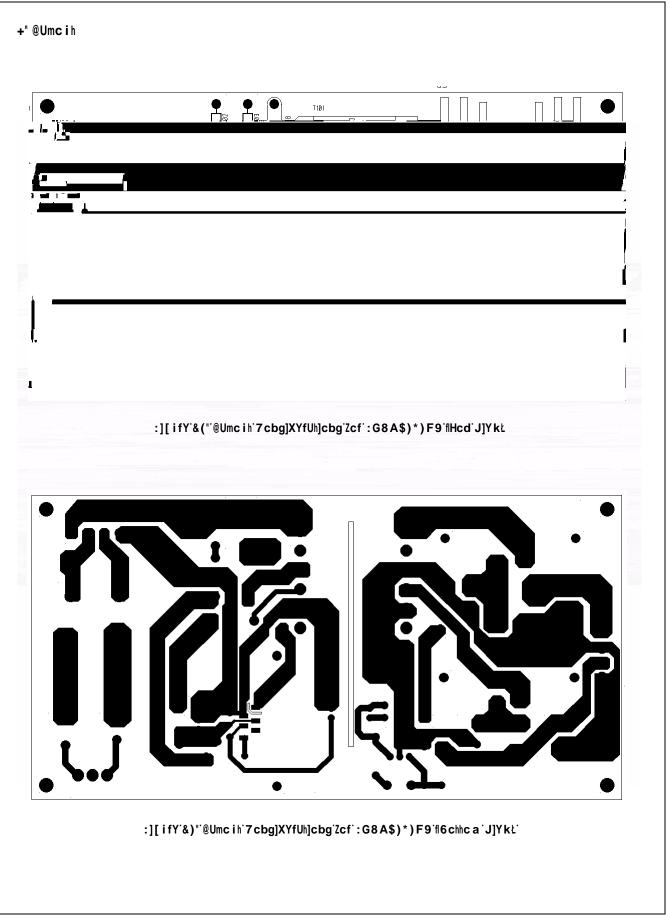
"% C jYf`cUX DfchYWh]cb flC@DL: Overload is defined as the load current exceeding a pre-set level due to an unexpected event. In this situation, the protection circuit should be activated to protect the SMPS. Even when the SMPS is in normal operation, the overload protection circuit can be activated during the load transition. To avoid this undesired operation, the overload protection circuit is designed to be activated after a specified time to determine whether it is a transient situation or a true overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes beyond this maximum power, the output voltage (V_O) decreases below the set voltage. This reduces the current through the optocoupler LED, which also reduces the opto-coupler transistor current, thus increasing the feedback voltage (V_{FB}). If V_{FB} exceeds 2.5V, D1 is blocked and the 3.5µA current source starts to charge C_B slowly up to V_{CC} . In this condition, V_{FB} continues increasing until it reaches 6V, when the switching operation is terminated, as shown in Figure 20. The delay time for shutdown is the time required to charge C_B from 2.5V to 6.0V with 3.5µA. A 10 ~ 50ms delay time is typical for most applications.

<section-header>
 reducing the production of the device of the device

5dd`]WUh]cb[:]=bZcf a Uh]cb[:]

:YUhifYg

- High efficiency (>81% at 85V_{AC} input)
- Low zero load power consumption (<300mW at 240V_{AC} input)
- Low standby mode power consumption (<800mW at 240V_{AC} input and 0.3W load)
- > Low component count
- > Enhanced system reliability through various protection functions
- > Internal soft-start (10ms)


?Ym'8Yg][b'BchYg

- Resistors R102 and R105 are employed to prevent start-up at low input voltage. After start-up, there is no power loss in these resistors since the start-up pin is internally disconnected after start-up.
- > The delay time for overload protection is designed to be about 50ms with C106 of 47nF. If a faster triggering of OLP is required, C106 can be reduced to 10nF.
- Zener diode ZD102 is used for a safety test, such as UL. When the drain pin and feedback pin are shorted, the zener diode fails and remains short, which causes the fuse (F1) to be blown and prevents explosion of the opto-coupler (IC301). This zener diode also increases the immunity against line surge.

%" GW\YaUh]W

:][ifY`&&"`8Yac`7]fWi]h`

:G8A\$(*)F9ž:G8A\$)*)F9ž:G8A\$+*)&F9``;f

:G8A\$(*)F9ž':G8A\$)*)F9ž':G8A\$+*)&F9'Ì';fYYb'AcXY'DckYf'Gk]hW\

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all aws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products hardness, and expenses, and learney fees analy or dist of personal liquer values against all claims, costs, damages, and expenses, and learney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arisin