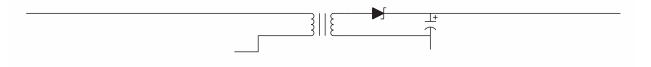


Is Now Part of

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON


EMI T

Pin Definitions

Pin Number	Pin Name	Functional Description
1	NC	Not connected
2	С	Phototransistor Collector
3	E	Phototransistor Emitter
4	NC	Not connected
5	GND	Ground
6	COMP	Error Amplifier Compensation. This pin is the output of the error amplifier.*
7	FB	Voltage Feedback. This pin is the inverting input to the error amplifier
8	LED	Anode LED. This pin is the input to the light emitting diode.

^{*}The compensation network must be attached between pins 6 and 7.

Typical Application

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-25 to +85	°C
	Reflow Temperature Profile (refer to 15)		
V _{LED}	Input Voltage	37	V
I _{LED}	Input DC Current	20	mA
V _{CEO}	Collector-Emitter Voltage	70	V
V _{ECO}	Emitter-Collector Voltage	7	V
I _C	Collector Current	50	mA
PD1	Input Power Dissipation ⁽¹⁾	145	mW
PD2	Transistor Power Dissipation ⁽²⁾	85	mW
PD3	Total Power Dissipation ⁽³⁾	145	mW

Notes:

- 1. Derate linearly from 25°C at a rate of 2.42mW/°C
- 2. Derate linearly from 25°C at a rate of 1.42mW/°C.
- 3. Derate linearly from 25°C at a rate of 2.42mW/°C.

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Input Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
V_{F}	LED Forward Voltage	$I_{LED} = 10 \text{mA}, V_{COMP} = V_{FB} \text{ (Fig. 1)}$	All		1.20	1.5	V
V_{REF}	Reference Voltage	$I_{LED} = 10 \text{mA}, V_{COMP} = V_{FB} \text{ (Fig. 1)}$	Α	2.482	2.495	2.508	V
			В	2.470	2.495	2.520	V
			С	2.450	2.500	2.550	V
V _{REF (DEV)}	Deviation of V _{REF} Over Temperature	$T_A = -25^{\circ}\text{C to } +85^{\circ}\text{C (Fig. 1)}$	All		3.5	17	mV
ΔV_{RE}	Ratio of V _{REF} Variation to	$I_{LED} = 10 \text{mA}$ $\Delta V_{COMP} = 10 \text{V to } V_{REF}$	All		-0.5	-2.7	mV/
ΔV_{COMP}	the Output of the Error Amplifier	(Fig. 2) $\Delta V_{COMP} = 36V \text{ to } 10V$			-0.3	-2.0	V
I _{REF}	Feedback Input Current	$I_{LED} = 10 \text{mA}, R_1 = 10 \text{K}\Omega \text{ (Fig. 3)}$	All		2.2	4	μΑ
I _{REF (DEV)}	Deviation of I _{REF} Over Temperature	$T_A = -25^{\circ}C \text{ to } +85^{\circ}C \text{ (Fig. 3)}$	All		1.0	1.2	μA
I _{LED (MIN)}	Minimum Drive Current	$V_{COMP} = V_{FB}$ (Fig. 1)	All		0.45	1.0	mA
I _(OFF)	Off-state Error Amplifier Current	$V_{LED} = 37V, V_{FB} = 0 \text{ (Fig. 4)}$	All		0.01	1.0	μΑ
Z _{OUT}	Error Amplifier Output Impedance (see note 2)	$V_{COMP} = V_{REF} I_{LED} = 1 \text{mA to } 20 \text{mA},$ f $\geq 1.0 \text{kHz}$	All		0.15	0.5	Ω

Notes:

1. The deviation parameters $V_{REF(DEV)}$ and $I_{REF(DEV)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, ΔV_{REF} , is defined as:

where ΔT_{A} is the rated operating free-air temperature range of the device.

2. The dynamic impedance is defined as $|Z_{OUT}| = \Delta V_{COMP}/\Delta I_{LED}$. When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

Electrical Characteristics ($T_A = 25$ °C unless otherwise specified) (Continued)

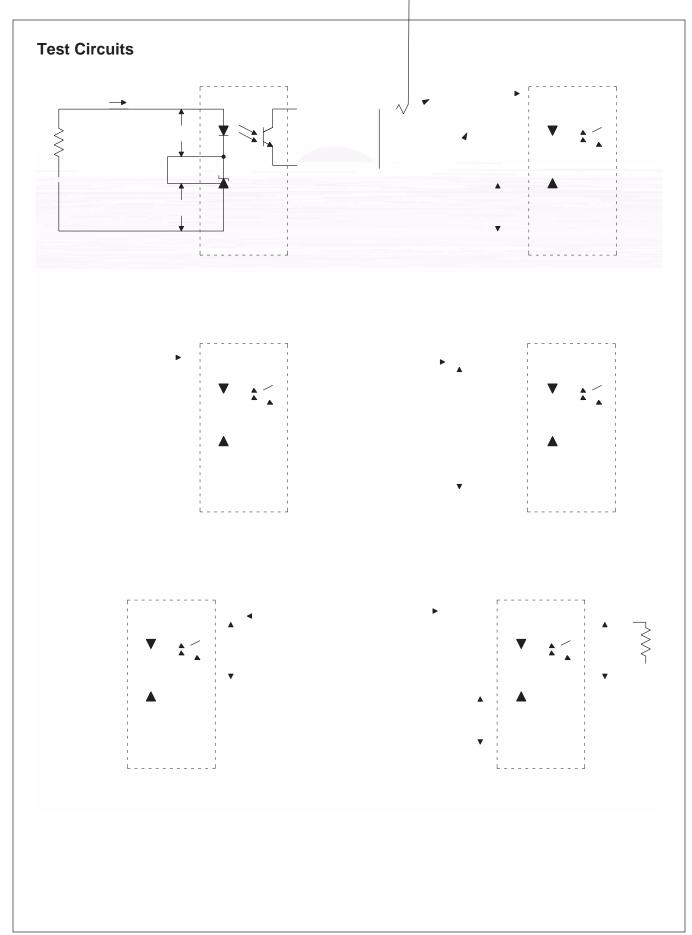
Output Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector Dark Current	V _{CE} = 10V (Fig. 5)		1	50	nA
BV _{ECO}	Emitter-Collector Voltage Breakdown	I _E = 100μA	7	10		V
BV _{CEO}	Collector-Emitter Voltage Breakdown	I _C = 1.0mA	70	120		V

Transfer Characteristics

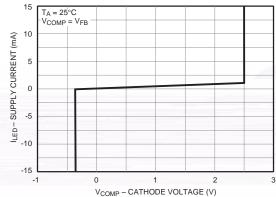
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
CTR	Current Transfer Ratio	$I_{LED} = 10$ mA, $V_{COMP} = V_{FB}$, $V_{CE} = 5V$ (Fig. 6)	100	140	200	%
V _{CE} (SAT)	Collector-Emitter Saturation Voltage	I_{LED} = 10mA, V_{COMP} = V_{FB} , I_{C} = 2.5mA (Fig. 6)		0.16	0.4	V

Isolation Characteristics


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	RH = 45%, T _A = 25°C, t = 5s, V _{I-O} = 3000 VDC (Note 1)			1.0	μА
V _{ISO}	Withstand Insulation Voltage	RH \leq 50%, T _A = 25°C, t = 1 min. (Note 1)	2500			Vrms
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500 VDC (Note 1)		10 ¹²		Ω

Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
B _W	Bandwidth	Fig. 7		50		kHz
CMH	Common Mode Transient Immunity at Output HIGH	$I_{LED} = 0mA, V_{cm} = 10 V_{PP}$ RL = 2.2k Ω (Fig. 8) (Note 2)		1.0		kV/µs
CML	Common Mode Transient Immunity at Output LOW	$I_{LED} = 10 \text{mA}, V_{cm} = 10 V_{PP}$ RL = 2.2k Ω (Fig. 8) (Note 2)		1.0		kV/µs


Notes:

- 1. Device is considered as a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 2. Common mode transient immunity at output high is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode impulse signal, Vcm, to assure that the output will remain high. Common mode transient immunity at output low is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common pulse signal, Vcm, to assure that the output will remain low.

Typical Performance Curves

Fig. 9a LED Current vs. Cathode Voltage

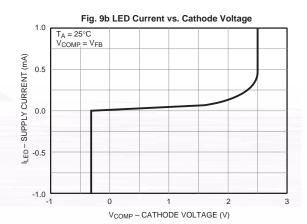
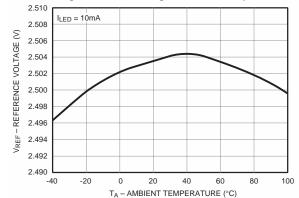
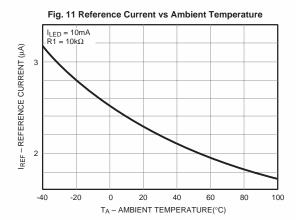
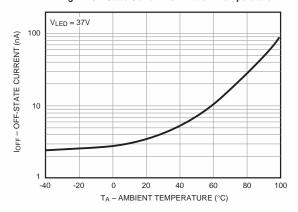
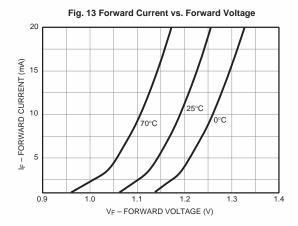
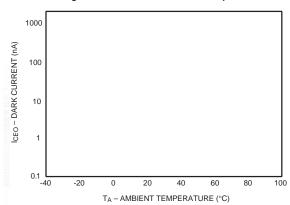
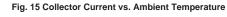



Fig. 10 Reference Voltage vs. Ambient Temperature


Fig. 12 Off-State Current vs. Ambient Temperature



Typical Performance Curves (Continued)

Fig. 14 Dark Current vs. Ambient Temperature

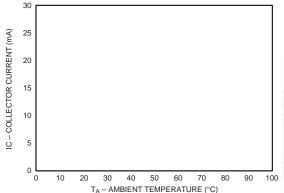
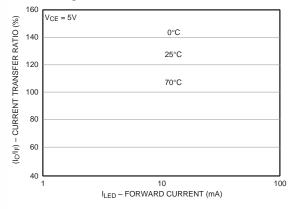
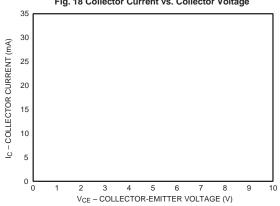
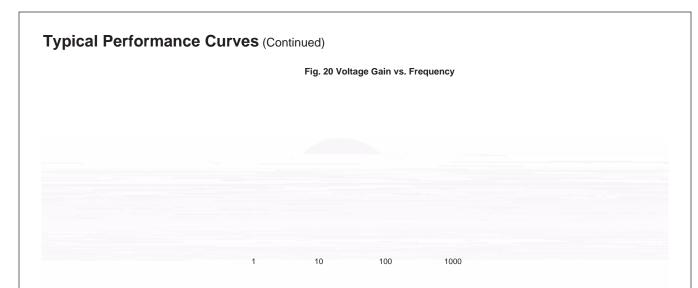





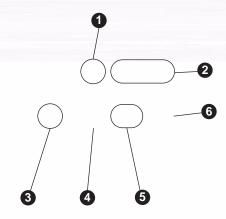
Fig. 16 Current Transfer Ratio vs. LED Current

I_{LED} = 10mA I_C = 2.5mA

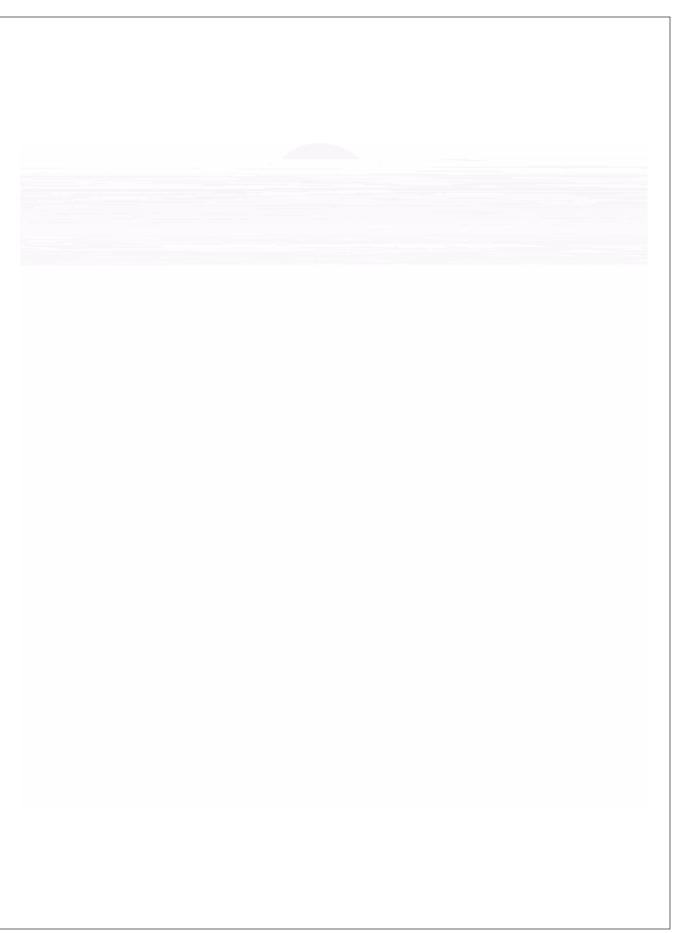
The FOD2742

The FOD2742 is an optically isolated error amplifier. It incorporates three of the most common elements necessary to make an isolated power supply, a reference voltage, an error amplifier, and an optocoupler. It is functionally equivalent to the popular KA431 shunt voltage regulator plus the CNY17F-X optocoupler.

Powering the Secondary Side


The LED pin in the FOD2742 powers the secondary side, and in particular provides the current to run the LED. The actual structure of the FOD2742 dictates the minimum voltage that can be applied to the LED pin: The error amplifier output has a minimum of the reference voltage, and the LED is in series with that. Minimum voltage applied to the LED pin is thus 2.5V + 1.5V = 4.0V. This voltage can be generated either directly from the output of the converter, or else from a slaved secondary winding. The secondary winding will not affect regulation, as the input to the FB pin may still be taken from the output winding.

The LED pin needs to be fed through a current limiting resistor. The value of the resistor sets the amount of current through the LED, and thus must be carefully selected in conjunction with the selection of the primary side resistor.


Ordering Information

Option	Order Entry Identifier	Description		
V	V	VDE 0884		
R2	R2	Tape and reel (2500 units per reel)		
R2V	R2V	VDE 0884, Tape and reel (2500 units per reel)		

Marking Information

Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '3'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Reflow Profile

Profile Freature

Temperature Min. (Tsmin)
Temperature Max. (Tsmax)
Time (t_S) from (Tsmin to Tsmax)
Ramp-up Rate $(t_L$ to $t_P)$ Liquidous Temperature (T_L) Time (t_L) Maintained Above (T_L) Peak Body Package Temperature
Time (t_P) within 5°C of 260°C
Ramp-down Rate $(T_P$ to $T_L)$ Time 25°C to Peak Temperature

Pb-Free Assembly Profile

150°C
200°C
60–120 seconds
3°C/second max.
217°C
60–150 seconds
260°C +0°C / –5°C
30 seconds
6°C/second max.
8 minutes max.

٤,

=

SIONS A

_____ Γ) LANDPATT

0.56

LE:**∤**

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries i