nse '

Schematics

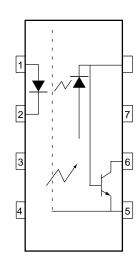


Figure 1. Schematics

ABSOLUTE MAXIMUM RATINGS (T_A = 25°

ELECTRICAL CHARACTERISTICS (Continued)

(T_A = 0°C to 70°C, unless otherwise specified.)

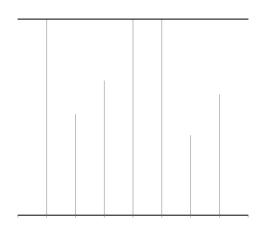
SWITCHING CHARACTERISTICS ($V_{CC} = 3.3 \vee \& 5 \vee$)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
T _{PHL}	Propagation Delay Time to Logic LOW	$R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA} \text{ (Note 3)}$	25°C			1.0	
		(Figure 10)				2.0	μs
T _{PLH}	Propagation Delay Time to Logic HIGH	$R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA} \text{ (Note 3)}$	25°C			1.0	
		(Figure 10)				2.0	μs
CM _H	Common Mode Transient Immunity at Logic HIGH	$I_{F} = 0 \text{ mA}, V_{CM} = 1,000 \text{ V}_{P-P}, R_{L} = 4.1 \text{ k}\Omega, T_{A} = 25^{\circ}\text{C}$ (Notes 4, 5) (Figure 11)		5,000	50,000		V/µs
	$I_F = 0$ mA, $V_{CM} = 1,000 V_{P-P}$, $R_L = 1.9 k\Omega$, $T_A = 25^{\circ}C$ (Notes 3, 5) (Figure 11)		√= 25°C	5,000	50,000		V/µs
CM _L	Common Mode Transient Immunity at Logic LOW	I_F = 16 mA, V _{CM} = 1,000V _{P-P} , R _L = 4.1 kΩ, T _A = 25°C (Notes 4, 5) (Figure 11)		5,000	35,000		V/µs
		I_{F} = 16 mA, V_{CM} = 1,000 V_{P-P},R_{L} = 1.9 kΩ, T_{A} = 25°C (Notes 3, 5) (Figure 11)		5,000	35,000		V/µs

ISOLATION CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
I _{I-O}	Indul-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25^{\circ}C$, t = 5 s, $V_{I-O} = 3000$ VDC (Note 6)			1.0	μΑ
V _{ISO}	Withstand Insulation Test Voltage	f = 60 Hz, T _A = 25°C, t = 60 s (Note 6)	2500			V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500 VDC (Note 6)	10 ¹¹	10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz (Note 6)		0.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


3. The 1.9 k\Omega load represents 1 TTL unit load of 1.6 mA and 5.6 k\Omega pull-up resistor.

4. The 4.1 k\Omega load represents 1 LSTTL unit load of 0.36 mA and 6.1 kΩ pull–up resistor.

5. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., V_O > 2.0 V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., V_O < 0.8 V).</p>

6. Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.

TYPICAL PERFORMANCE CURVES

V_F - FORWARD VOLTAGE (V)mA0 G.73158.4 5791.168 T 0 0 m281

Figure 2. LED Forward Current vs. Forward Voltage

Figure 3. Current Transfer Ratio vs. Forward Current

Figure 4. Current Transfer Ratio vs. Ambient Temperature Figure 5. Output Current vs. Output Voltage

Figure 6. Logic High Output Current vs. Ambient Temperature Figure 7. Supply Current vs. Input Forward Current

TEST CIRCUITS

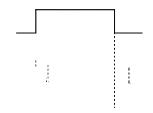
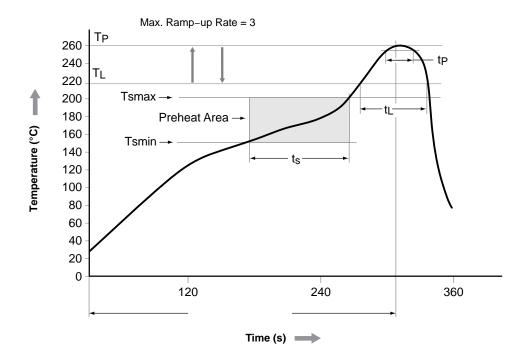



Figure 10. Switching Time Test Circuit

REFLOW PROFILE

ORDERING INFORMATION

Part Number (Note 7)	Package	Packing Method [†]		
FOD050L	SOIC8 (Pb-Free)	Tube (50 Units per Tube)		
FOD050LR2	SOIC8 (Pb-Free)	Tape and Reel (1000 Units per Reel)		
FOD050LV	SOIC8 (Pb-Free), DIN EN/IEC60747-5-5 Option	Tube (50 Units per Tube)		
FOD050LR2V	SOIC8 (Pb-Free), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units per Reel)		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.The product orderable part number system listed in this table also applies to the FOD053L product.

All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.

SOIC8 CASE 751DZ ISSUE O

DATE 30 SEP 2016

ALL DIMENSION

_

_

=

_

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi