Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey.

At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at **www.onsemi.com**

onse 1

 V_{CC} IGN Sense LAMP V_{SUP}

Figure 1. Block Diagram

ELECTRICAL CHARACTERISTICS (-40° C < T_A < 125° C, -40° C < T_J < 150° C, $9.0 \text{ V} \leq V_{CC} \leq 10^{\circ}$ C

PACKAGE PIN DESCRIPTION

PACKAGE PIN #				
SOIC-14	Flip Chip	PIN SYMBOL	FUNCTION	
1	1	Driver	Output driver for external power switch–Darlington	
2	2	GND	Ground	
3, 6, 7, 9, 13	3	NC	No Connection	
4	4	OSC	Timing capacitor for oscillator	
5	5	Lamp	Base driver for lamp driver indicates no stator signal or overvoltage condition	
8	6	IGN	Switched ignition powerup	
10	7	Stator	Stator signal input for stator timer (CS3351 also powerup)	
11	8	Sense	Battery sense voltage regulator comparator input and protection	
12	9	V _{CC}	Supply for IC	
14	10	SC	Short circuit sensing	

ORDERING INFORMATION

Device	Package	Shipping [†]
CS3341YD14	SOIC-14	55 Units/Rail
CS3341YD14G	SOIC-14 (Pb-Free)	55 Units/Rail
CS3341YDR14	SOIC-14	2500 Tape & Reel
CS3341YDR14G	SOIC-14 (Pb-Free)	2500 Tape & Reel
CS3351YD14	SOIC-14	55 Units/Rail
CS3351YD14G	SOIC-14 (Pb-Free)	55 Units/Rail
CS3351YDR14	SOIC-14	2500 Tape & Reel
CS3351YDR14G	SOIC-14 (Pb-Free)	2500 Tape & Reel
CS387H	Flip Chip	Contact Sales

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CHARACTERISTICS

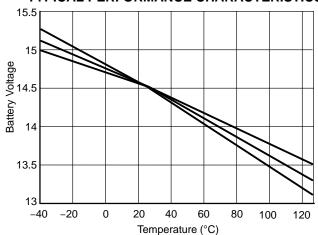
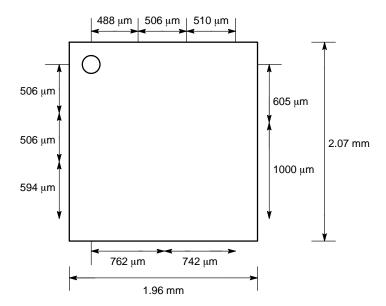


Figure 2. Battery Voltage vs. Temperature (°C)
Over Process Variation

REGULATION WAVEFORMS

The CS3341/3351/387 utilizes proportion control to maintain regulation. Waveforms depicting operation are shown in Figures 4, 5 and 6, where $V_{BAT/N}$ is the divided down voltage present on the Sense pin using R1 and R2 (Figure 7). A sawtooth waveform is generated internally. The amplitude of this waveform is listed in the electric parameter section as proportion control. The oscillator voltage is summed with $V_{BAT/N}$, and compared with the internal voltage regulator (V_{REG}) in the regulation


comparator which controls the field through the output "Device Driver."

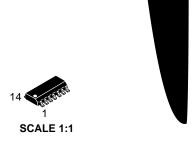
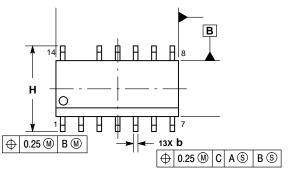
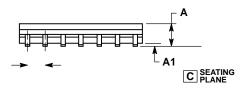
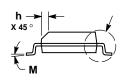

Figure 4 shows typical steady state operation. A 50% duty cycle is maintained.

Figure 5 shows the effect of a drop in voltage on $(V_{BAT/N}$

 $^{+}$ V_{OSC}). Notice the duty cycle increase to the field drive. Figure 6 shows the effect of an increase in voltage (above


Figure 6 shows the effect of an increase in voltage (at the regulation voltage) on $(V_{BAT/N})$



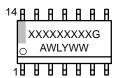


SOIC 14 NB CASE 751A-03 **ISSUE L**

DATE 03 FEB 2016

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.


 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- SIDE.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

WL= Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

STYLES ON PAGE 2

SOIC 14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE

