AX-SIGFOX MINISTAMP AX-SIGFOX ANTSTAMP

Ultra-Low Power, AT Command Controlled, Sigfox[®] Compliant Modules

Overview

The AX–SIGFOX modules are ultra–low power module solutions for a node on the Sigfox network with both up– and down–link functionality. The AX–SIGFOX modules connect to the customer application using a logic level RS232 UART. AT commands are used to send frames and configure radio parameters.

The AX-SIGFOX module comes in two flavors

- AX–SIGFOX MINISTAMP with 50 Ω Antenna Port
- AX–SIGFOX ANTSTAMP with On–board –5 dBi Chip Antenna

Functionality and Ecosystem

- Sigfox up–link and down–link functionality controlled by AT commands
- The AX–SIGFOX modules are part of a whole development and product ecosystem available from ON Semiconductor for any Sigfox requirement. Other parts of the ecosystem include
 - AX–Sigfox ultra–low power, AT command controlled, Sigfox compliant transceiver IC
 - Ready to go AX–Sigfox development kit with fully functional AX–Sigfox module including Sigfox subscription
 - Sigfox Ready certified reference design for the AX–Sigfox IC
 - AX-Sigfox API IC for customers wishing to write their own application software based on the ON Semiconductor Sigfox Library

General Features

- 18.2 x 22 x 3 mm³ without chip antenna, 18.2 x 39.7 x 3 mm³ with chip antenna
- Supply range from 1.8 V to 3.3 V
- -40°C to 85°C
- Temperature sensor
- Supply voltage measurements
- 10 GPIO pins
 - 4 GPIO pins with selectable voltage measure functionality, differential (1 V or 10 V range) or single ended (1 V range) with 10 bit resolution

www.onsemi.com

- 2 GPIO pins with selectable sigma delta DAC output functionality
- 2 GPIO pins with selectable output clock
- 3 GPIO pins selectable as SPI master interface

Power Consumption

- Ultra-low power consumption
 - Charge required to send a Sigfox OOB packet at 14 dBm output power: 0.29 C
 - Deepsleep mode current: 500 nA
 - Sleep mode current: 1.6 μA
 - Standby mode current : 0.5 mA
 - Continuous radio reception at 869.525 MHz: 13 mA
 - Continuous radio transmission at 868.130 MHz for 14 dBm output power: 51 mA for 0 dBm output power: 21 mA
- The output power of AX–SIGFOX modules can be programmed in 1 dB steps from 0 dBm – 14 dBm. They are optimized for best power efficiency at 14 dBm output power. For modules optimized for other output power values e.g 0 dBm transmission with 10 mA please contact us.

High Performance Narrow-band Sigfox Receiver

- Carrier frequency 868.525 MHz
- Data-rate 600 bps
- Sensitivity: -126 dBm @ 600 bps, 869.525 MHz, GFSK
- 0 dBm maximum input power

Highly Efficient Transmitter

- Carrier frequency 868.13 MHz
- Data-rate 100 bps PSK
- Maximum output power 14 dBm
- Power level programmable in 1 dBm steps from 0 dBm to 14 dBm

Regulatory

- Sigfox Ready certified
- EN 300 220

About the Sigfox Technology

Sigfox uses an Ultra Narrow Band (UNB) based radio technology to connect devices to its global network. The usage of UNB is key to providing a scalable, high–capacity network, with very low energy consumption, while maintaining a simple and easy to rollout star–based cell infrastructure.

The network operates in the globally available ISM bands (license–free frequency bands) and co–exists in these frequencies with other radio technologies, but without any risk of collisions or capacity problems.

Sigfox currently uses the most popular European ISM band on 868 MHz (as defined by ETSI and CEPT) as well

as 902 MHz in the USA (as defined by the FCC), depending on specific regional regulations.

Sigfox only acts as a transport channel, pushing the data towards the customer's IT system.

An important advantage provided by the use of the narrow band technology is the flexibility it offers in terms of antenna design. On the network infrastructure end it allows the use of small and simple antennas, but more importantly, it allows devices to use inexpensive and easily customizable antennas.

The Sigfox protocol is compatible with existing transceivers and is actively being ported to a growing number of platforms.

(Note that the actual product comes with a metal cap)

Figure 1. AX–SIGFOX MINISTAMP/ANTSTAMP Modules

PINOUT

Table 1. PIN FUNCTION DESCRIPTION

Pin	Name	Function
1*	GND	Ground
2*	NC	Do not connect
3*	NC	
4*	NC	
5*	GND	Ground
6*	ANT50 Ω	50 Ω antenna port
7*	GND	Ground
8*	NC	Do not connect
9	NC	
10	GPIO8	General purpose IO
11	GPIO7	General purpose IO, selectable SPI functionality (MISO)
12	GPIO6	General purpose IO, selectable SPI functionality (MOSI)
13	GPIO5	General purpose IO, selectable SPI functionality (SCK)
14	GPIO4	General purpose IO, selectable $\Sigma\Delta$ DAC functionality, selectable clock functionality
15	CPU_LED	

Table 1. PIN FUNCTION DESCRIPTION

Pin	Name	Function
31	GPIO2	General purpose IO, selectable ADC functionality
32	NC	Do not connect
33	NC	
34	GPIO3	General purpose IO, selectable ADC functionality

NOTE: All digital pins are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible. Pins GPIO[3:0] must not be driven above VDD, all other digital inputs are 5 V tolerant. All GPIO pins and UART_RX start–up as inputs with pull–up.

Dimensions

Figure 3. Dimensions (mm)

SPECIFICATIONS

Table 2. SUPPLIES

Symbol	Description	Condition	Min	Тур	Max	Units
T _{AMB}	Operational ambient temperature		-40	27	85	°C
VDD	Supply voltage		1.8	3.0	3.3	V
I _{DS}	Deep sleep mode current	AT\$P=2		500		nA
I _{SLP}	Sleep mode current	AT\$P=1		1.6		μΑ
I _{STDBY}	Standby mode current			0.5		mA
Continuous Red	ceive	•		•	•	
I _{RX_CONT}	Current consumption in Sigfox RX test mode	AT\$SR=1,1,-1		12.8		mA
Transmit at 14 c	Bm Output Power / Receive (Note 2)	•		•	•	
I _{TXMODAVG_14}	Modulated transmitter current			51.0		mA
Q _{SFX_OOB_14}	Charge to send a Sigfox out of band message	AT\$S0		0.28		С
Q _{SFX_OOB_14}	Charge to send a bit	AT\$SB=0		0.19		С
Q _{SFX_OOB_14}	Charge to send a bit with downlink receive message	AT\$SB=0,1		0.33		С
Q _{SFX_LFR_14}	Charge to send the longest possible Sigfox frame (12 byte)	AT\$SF=00112233445566778899aabb		0.37		С
Q _{SFX_LFR_14}	Charge to send the longest possible Sigfox frame (12 byte) with downlink receive	AT\$SF=00112233445566778899aabb,1		0.46		С
Transmit at 0 d	3m Output Power / Receive (Notes 1 an	d 2)				
I _{TXMODAVG_14}	Modulated Transmitter Current			21.0		mA
Q _{SFX_OOB_0}	Charge to send a Sigfox out of band message	AT\$S0		0.12		С
Q _{SFX_OOB_0}	Charge to send a bit	AT\$SB=0		0.08		С
Q _{SFX_OOB_0}	Charge to send a bit with downlink receive message	AT\$SB=0,1		0.14		С
Q _{SFX_LFR_0}	Charge to send the longest possible Sigfox frame (12 byte)	AT\$SF=00112233445566778899aabb		0.27		С
Q _{SFX_LFR_0}	Charge to send the longest possible	AT\$SF=00112233445566778899aabb,1		0.29		С

 The output power of AX-SIGFOX modules can be programmed in 1 dB steps from 0 dBm – 14 dBm. They are optimized for best power efficiency at 14 dBm output power. For modules optimized for other output power values e.g. 0 dBm transmission with 10 mA please contact us.

2. Antenna gain not included.

receive

Sigfox frame (12 byte) with downlink

Figure 4. Typical Current Waveform for a Maximum Length Frame with Downlink Receive at 14 dBm Output Power

Table 3. LOGIC

Symbol	Description	Condition	Min	Тур	Max	Units
Digital Input	Digital Inputs					
V _{T+}	Schmitt trigger low to high threshold point	VDD = 3.3 V		1.55		V
V _{T-}	Schmitt trigger high to low threshold point			1.25		V
V _{IL}	Input voltage, low				0.8	V
V _{IH}	Input voltage, high		2.0			V
V _{IPA}	Input voltage range, GPIO[3:0]		-0.5		VDD	V
V _{IPBC}	Input voltage range, GPIO[9:4], UART_RX, RESET_N		-0.5		5.5	V
۱ _L	Input leakage current		-10		10	μΑ
R _{PU}	Programmable pull-up resistance			65		kΩ
Digital Outp	Digital Outputs					
I _{OH}	Output Current, high	V _{OH} = 2.4 V	8			mA

ЭН	Output Current, high
	Ports GPIO[9:0], UART_TX

	Ports GPIO[9:0], UART_TX, TX_LED, RX_LED, CPU_LED, RADIO_LED				
I _{OL}	Output Current, Iow GPIO[9:0], UARTTX, TXLED, RXLED, TXLED, CPULED	V _{OL} = 0.4 V	8		mA
I _{OZ}	Tri-state output leakage current		-10	10	μΑ

Table 4. TRANSMITTER

Symbol	Description	Condition	Min	Тур	Max	Units
SBR	Signal bit rate			100		bps
f _{carrier}	Carrier frequency			868.13		MHz
PTX _{min}	Lowest Transmitter output power	AT\$CW=868130000,1,0		0		dBm
PTX _{max}	Highest Transmitter output power	AT\$CW=868130000,1,14 (Note 1)		14		dBm
PTX _{step}	Programming step size output power			1		dB

 $dTX_{tempPT7.2945\ 325.7008\ Tm(dTX)TTm0\ Tc(1)T\ 350.306\ 4h983\ refBT8\ 0\ 0\ 8\ 126.9354\ 341.0079\ Tm-.TX}$

Table 6. ADC / TEMPERATURE SENSOR

Symbol	Description	Condition	Min	Тур	Max	Units
ADCRES	ADC resolution			10		bit
VADCREF	ADC reference voltage		0.95	1	1.05	V
Z _{ADC00}	Input capacitance				2.5	pF
DNL	Differential nonlinearity			± 1		LSB
INL	Integral nonlinearity			± 1		LSB
OFF	Offset			3		LSB
GAIN_ERR	Gain error			0.8		%
ADC in Differ	ential Mode					
V _{ABS_DIFF}	Absolute voltages & common mode voltage in differential mode at each input		0		VDD	V
V _{FS_DIFF01}	Full swing input for differential signals	Gain x1	-500		500	mV
V _{FS_DIFF10}		Gain x10	-50		50	mV
ADC in Single	e Ended Mode					
V _{MID_SE}	Mid code input voltage in single ended mode			0.5		V
V _{IN_SE00}	Input voltage in single ended mode		0		VDD	V
V _{FS_SE01}	Full swing input for single ended signals	Gain x1	0		1	V
Temperature	Temperature Sensor					
T _{RNG}	Temperature range		-40		85	°C
T _{ERR_CAL}	Temperature error			± 2		°C

The 'CB' command sends out a continuous pattern of bits, in this case 0xAA = 0b10101010:

AT\$CB=0xAA,1 OK

This transitions the device into sleep mode. Out-of-band transmissions will still be triggered. The UART is powered

Table 7. COMMANDS

down. The module can be woken up by a low level on the UART signal, i.e. by sending break.

AT\$P=1 OK

Command	Name	Description
AT	Dummy Command	Just returns 'OK' and does nothing else. Can be used to check communication.
AT\$SB=bit[,bit]	Send Bit	Send a bit status (0 or 1). Optional bit flag indicates if AX–SIGFOX module should receive a downlink frame.

AT\$SF=frame[,bit]

Table 7. COMMANDS

Command	Name	Description
AT\$I=uint	Information	Description Display various product information: 0: Software Name & Version Example Response: AX–S&jtgføx1 ເປເ66

AX-SIGFOX

Table 9. DEVICE NUMBERS