LIN Transceiver

General Description

The single-wire transceiver AMIS-30600 is a monolithic integrated circuit in a SOIC-8 package. It works as an interface between the protocol controller and the physical bus.

The AMIS-30600 is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can be used in standard ISO9141 systems.

Table 1. PIN LIST AND DESCRIPTIONS

Pin	Name	Description		
1	RxD	Receive data output; low in dominant state		
2	EN	Enable input; transceiver in normal operation mode when high		
3	VCC	5V supply input		
4	TxD	Transmit data input; low in dominant state; internal 40 k Ω		

APPLICATION INFORMATION

 V_{CC} controlled by INH: INH = Float V_{CC} = off INH = H V_{CC} = on

Table 4. DC CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{BB} = 7.3 V to 18 V, V_{EN} < V_{ENon} , T_A = -40°C to +125°C; R_L = 500 Ω unless specified otherwise. All voltages with respect to ground, positive current flowing into pin, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
--------	-----------	------------	-----	-----	-----	------

SUPPLY (Pin V_{CC} and Pin $V_{BB})$

Table 5. AC ELECTRICAL CHARACTERISTICS ACCORDING TO LIN V13 V_{CC} = 4.75 V to 5.25 V; V_{BB} = 7.3 V to 18 V, V_{EN} < V_{ENon} , T_A = -40°C to +125°C; R_L = 500 Ω unless otherwise specified. Load for slope definitions (typical loads) = [L1] 1 nF 1 kΩ / [L2] 6.8 nF 600 Ω / [L3] 10 nF 500 Ω .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t_slope_F	Slope Time Falling Edge; (Note 5)	See Figure 5	4	-	24	μS
t_slope_R	Slope Time Rising Edge; (Note 5)	See Figure 5	4	-	24	μS
t_slope_Sym	Slope Time Symmetry; (Note 5)	t_slope_F - t_slope_R	-8	-	+8	μS
T_rec_F	Propagation Delay Bus Dominant to RxD = Low; (Note 6)	See Figures 4 and 5		2	6	μs
T_rec_R	Propagation Delay Bus Recessive to RxD = High; (Note 6)	See Figures 4 and 5		6	6	μS
t _{WAKE}	Wake-up Delay Time		30	100	200	μS

^{5.} Guaranteed by design; not measured for all supply/load combinations on ATE.

Table 6. AC ELECTRICAL CHARACTERISTICS ACCORDING TO LIN v2.0 V_{CC} = 4.75 V to 5.25 V; V_{BB} = 7.3 V to 18 V, V_{EN} < V_{ENon} , V_{ENon}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
DYNAMIC RECEIVER CHARACTERISTICS ACCORDING TO LIN v2.0							
trx_pdr	Propagation Delay Bus Dominant to RxD = Low; (Note 7)	See Figure 6			6	μS	
trx_pdf	Propagation Delay Bus Recessive to RxD = High; (Note 7)	See Figure 6			6	μS	
trx_sym	Symmetry of Receiver Propagation Delay	trx_pdr - trx_pdf	-2	-	+2	μS	
DYNAMIC TR	ANSMITTER CHARACTERISTICS ACCORDING	G TO LIN v2.0					
D1	Duty Cycle 1 = t _{Bus_rec(min)} /(2 x t _{Bit}); See Figure		0.396		0.5		
D1	Duty Cycle 1 = t _{Bus_rec(min)} /(2 x t _{Bit} See Fig6ure	•	·	•		•	

^{6.} Not measured on ATE.

DEVICE ORDERING INFORMATION

Part Number	Temperature Range	Package Type	Shipping [†]
AMIS30600LINI1G	−40°C − 125°C	SOIC-8 (Pb-Free)	96 Tube / Tray
AMIS30600LINI1RG	−40°C − 125°C	SOIC-8 (Pb-Free)	•

*For

