2N6387, 2N6388

Plastic Medium-Power Silicon Transistors

These devices are designed for general-purpose amplifier and low-speed switching applications.

Features

- High DC Current Gain $h_{FE} = 2500$ (Typ) @ $I_C = 4.0$ Adc
- Collector-Emitter Sustaining Voltage @ 100 mAdc

$$V_{CEO(sus)} = 60 \text{ Vdc (Min)} - 2N6387$$

= 80 Vdc (Min) - 2N6388

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 2.0 \text{ Vdc (Max)} @ I_C$$

= 5.0 Adc - 2N6387, 2N6388

- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- TO-220AB Compact Package
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS (Note 1)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N6387 2N6388	V _{CEO}	60 80	Vdc
Collector-Base Voltage	2N6387 2N6388	V _{CB}	60 80	Vdc
Emitter-Base Voltage		V _{EB}	5.0	Vdc
Collector Current – Continuous – Peak		I _C	10 15	Adc
Base Current		I _B	250	mAdc
Total Power Dissipation @ T _C = 2 Derate above 25°C	25°C	P _D	65 0.52	domone

POWER TRANSISTORS
8 AND 10 AMPERES
65 WATTS, 60 – 80 VOLTS

TO-220 CASE 221A STYLE 1

assumed, damage may occur and reliability may be affected.

1. Indicates JEDEC Registered Data.

2N638x = Device Code

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.92	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N6387, 2N6388

Figure 1. Power Derating

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				_	_
Collector–Emitter Sustaining Voltage (Note 3) (I _C = 200 mAdc, I _B = 0)	2N6387 2N6388	V _{CEO(sus)}	60 80	_ _	Vdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 80 \text{ Vdc}, I_B = 0)$	2N6387 2N6388	ICEO	_ _	1.0 1.0	mAdc
	2N6387 2N6388 2N6387 2N6388	I _{CEX}	- - - -	300 300 3.0 3.0	μAdc mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	_	5.0	mAdc

ON CHARACTERISTICS (Note 3)

DC Current Gain ($I_C = 5.0$ Adc, $V_{CE} = 3.0$ Vdc) ($I_C = 1$ 0 Adc, $V_{CE} = 3.0$ Vdc)	2N6387, 2N6388 2N6387, 2N6388	h _{FE}	1000 100	20,000	-
Collector–Emitter Saturation Voltage ($I_C = 5.0$ Adc, $I_B = 0.01$ Adc) ($I_C = 10$ Adc, $I_B = 0.1$ Adc)	2N6387, 2N6388 2N6387, 2N6388	V _{CE(sat)}	- 1	2.0 3.0	Vdc
$\begin{aligned} \text{Base-Emitter On Voltage} \\ \text{(I}_{\text{C}} &= 5.0 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} &= 10 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \end{aligned}$	2N6387, 2N6388 2N6387, 2N6388	V _{BE(on)}	-	2.8 4.5	Vdc

DYNAMIC CHARACTERISTICS

Small–Signal Current Gain (I_C = 1.0 Adc, V_{CE} = 5.0 Vdc, f_{test} = 1.0 MHz)

2N6387, 2N6388

Figure 2. Switching Times Test Circuit

Figure 3. Switching Times

V, VOLTAGE (VOLTS)

 I_{C} , COLLECTOR CURRENT (AMP)

Figure 10. "On" Voltages

