2N6387, 2N6388 # Plastic Medium-Power Silicon Transistors These devices are designed for general-purpose amplifier and low-speed switching applications. #### **Features** - High DC Current Gain $h_{FE} = 2500$ (Typ) @ $I_C = 4.0$ Adc - Collector-Emitter Sustaining Voltage @ 100 mAdc $$V_{CEO(sus)} = 60 \text{ Vdc (Min)} - 2N6387$$ = 80 Vdc (Min) - 2N6388 • Low Collector-Emitter Saturation Voltage - $$V_{CE(sat)} = 2.0 \text{ Vdc (Max)} @ I_C$$ = 5.0 Adc - 2N6387, 2N6388 - Monolithic Construction with Built-In Base-Emitter Shunt Resistors - TO-220AB Compact Package - These Devices are Pb-Free and are RoHS Compliant* #### MAXIMUM RATINGS (Note 1) | Rating | | Symbol | Value | Unit | |---|------------------|------------------|------------|--------| | Collector-Emitter Voltage | 2N6387
2N6388 | V _{CEO} | 60
80 | Vdc | | Collector-Base Voltage | 2N6387
2N6388 | V _{CB} | 60
80 | Vdc | | Emitter-Base Voltage | | V _{EB} | 5.0 | Vdc | | Collector Current – Continuous – Peak | | I _C | 10
15 | Adc | | Base Current | | I _B | 250 | mAdc | | Total Power Dissipation @ T _C = 2
Derate above 25°C | 25°C | P _D | 65
0.52 | domone | POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60 – 80 VOLTS TO-220 CASE 221A STYLE 1 assumed, damage may occur and reliability may be affected. 1. Indicates JEDEC Registered Data. 2N638x = Device Code #### THERMAL CHARACTERISTICS | Characteristics | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 1.92 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # 2N6387, 2N6388 Figure 1. Power Derating # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2) | Characteristic | | Symbol | Min | Max | Unit | |--|--------------------------------------|-----------------------|------------------|--------------------------|--------------| | OFF CHARACTERISTICS | | | | _ | _ | | Collector–Emitter Sustaining Voltage (Note 3) (I _C = 200 mAdc, I _B = 0) | 2N6387
2N6388 | V _{CEO(sus)} | 60
80 | _
_ | Vdc | | Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 80 \text{ Vdc}, I_B = 0)$ | 2N6387
2N6388 | ICEO | _
_ | 1.0
1.0 | mAdc | | | 2N6387
2N6388
2N6387
2N6388 | I _{CEX} | -
-
-
- | 300
300
3.0
3.0 | μAdc
mAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | | I _{EBO} | _ | 5.0 | mAdc | ## **ON CHARACTERISTICS** (Note 3) | DC Current Gain ($I_C = 5.0$ Adc, $V_{CE} = 3.0$ Vdc) ($I_C = 1$ 0 Adc, $V_{CE} = 3.0$ Vdc) | 2N6387, 2N6388
2N6387, 2N6388 | h _{FE} | 1000
100 | 20,000 | - | |---|----------------------------------|----------------------|-------------|------------|-----| | Collector–Emitter Saturation Voltage ($I_C = 5.0$ Adc, $I_B = 0.01$ Adc) ($I_C = 10$ Adc, $I_B = 0.1$ Adc) | 2N6387, 2N6388
2N6387, 2N6388 | V _{CE(sat)} | - 1 | 2.0
3.0 | Vdc | | $\begin{aligned} \text{Base-Emitter On Voltage} \\ \text{(I}_{\text{C}} &= 5.0 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \\ \text{(I}_{\text{C}} &= 10 \text{ Adc, V}_{\text{CE}} = 3.0 \text{ Vdc)} \end{aligned}$ | 2N6387, 2N6388
2N6387, 2N6388 | V _{BE(on)} | - | 2.8
4.5 | Vdc | ## **DYNAMIC CHARACTERISTICS** Small–Signal Current Gain (I_C = 1.0 Adc, V_{CE} = 5.0 Vdc, f_{test} = 1.0 MHz) # 2N6387, 2N6388 Figure 2. Switching Times Test Circuit Figure 3. Switching Times V, VOLTAGE (VOLTS) I_{C} , COLLECTOR CURRENT (AMP) Figure 10. "On" Voltages