PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045 # Plastic Medium-Power Complementary Silicon Transistors Plastic medium-power complementary silicon transistors are designed for general-purpose amplifier and low-speed switching applications. #### **Features** - High DC Current Gain $h_{FE} = 2500$ (Typ) @ $I_C = 4.0$ Adc - Collector–Emitter Sustaining Voltage @ 100 mAdc – V_{CEO(sus)} = 60 Vdc (Min) 2N6040, 2N6043 = 100 Vdc (Min) 2N6042, 2N6045 - Low Collector-Emitter Saturation Voltage - $V_{CE(sat)} = 2.0 \text{ Vdc (Max)} @ I_C = 4.0 \text{ Adc} - 2\text{N}6043,44$ = 2.0 Vdc (Max) @ $I_C = 3.0 \text{ Adc} - 2\text{N}6042, 2\text{N}6045$ - Monolithic Construction with Built-In Base-Emitter Shunt Resistors - Epoxy Meets UL 94 V-0 @ 0.125 in - ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V - These Devices are Pb-Free and are RoHS Compliant* ### MAXIMUM RATINGS (Note 1) | Rating | | Symbol | Value | Unit | |---|----------------------------|-----------------------------------|-------------|-----------| | Collector-Emitter Voltage | 2N6040
2N6043
2N6042 | V _{CEO} | 60
100 | Vdc | | | 2N6045 | | | | | Collector-Base Voltage | 2N6040
2N6043 | V_{CB} | 60 | Vdc | | | 2N6042
2N6045 | | 100 | | | Emitter-Base Voltage | | V _{EB} | 5.0 | Vdc | | Collector Current | Continuous
Peak | I _C | 8.0
16 | Adc | | Base Current | | I _B | 120 | mAdc | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | | P _D | 75
0.60 | W
W/°C | | Operating and Storage Junction
Temperature Range | | T _J , T _{stg} | -65 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. www.onsemi.com ## DARLINGTON, 8 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 60 – 100 VOLTS, 75 WATTS TO-220 CASE 221A STYLE 1 ### MARKING DIAGRAM 2N604x = Device Code x = 0, 2, 3, or 5 A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ^{1.} Indicates JEDEC Registered Data. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045 ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-------------------|------|------| | Thermal Resistance, Junction-to-Case | θJC | 1.67 | °C/W | | Thermal Resistance, Junction-to-Ambient | $\theta_{\sf JA}$ | 57 | °C/W | ## *ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) | Characteristic | | | Min | Max | Unit | |---|--|-----------------------|---------------------|--------------------------------------|------| | OFF CHARACTERISTICS | | | | • | | | Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$ | 2N6040, 2N6043
2N6042, 2N6045 | V _{CEO(sus)} | 60
100 | | Vdc | | Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 100 \text{ Vdc}, I_B = 0)$ | 2N6040, 2N6043
2N6042, 2N6045 | I _{CEO} | _
_ | 20
20 | μΑ | | | 2N6040, 2N6043
2N6042, 2N6045
2N6040, 2N6043
2N6041, 2N6044
2N6042, 2N6045 | I _{CEX} | -
-
-
- | 20
20
200
200
200
200 | μΑ | | Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ | 2N6040, 2N6043
2N6042, 2N6045 | I _{CBO} | | 20
20 | μΑ | | Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0$) | | I _{EBO} | - | 2.0 | mAd | | ON CHARACTERISTICS | | | | | | | DC Current Gain
($I_C = 4.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$)
($I_C = 3.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$)
($I_C = 8.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$) | 2N6040, 2N6043,
2N6042, 2N6045
All Types | h _{FE} | 1000
1000
100 | 20.000
20,000
– | - | | Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}$, $I_B = 16 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}$, $I_B = 12 \text{ mAdc}$) ($I_C = 8.0 \text{ Adc}$, $I_B = 80 \text{ Adc}$) | 2N6040, 2N6043,
2N6042, 2N6045
All Types | V _{CE(sat)} | -
-
- | 2.0
2.0
4.0 | Vdc | | Base-Emitter Saturation Voltage (I _C = 8.0 Adc, I _B = 80 mAdc) | | V _{BE(sat)} | - | 4.5 | Vdc | | Base–Emitter On Voltage ($I_C = 4.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$) | _ | V _{BE(on)} | - | 2.8 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Small Signal Current Gain ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$ | z) | h _{fe} | 4.0 | _ | | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) | 2N6040/2N6042
2N6043/2N6045 | C _{ob} | _
_ | 300
200 | pF | | Small-Signal Current Gain (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc, f = 1.0 kHz) | | | 300 | _ | - | ## PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045