

www.onsemi.com

# APPLICATION NOTE

### INTRODUCTION

The purpose of this paper is to demonstrate a systematic approach to design high-performance bootstrap gate drive

Figure 6 shows the waveforms of the high-side, N-channel MOSFET during turn-off.



Figure 6. Waveforms During Turn-off

Figure 9. Case 1: Ideal Bootstrap Circuits

#### DESIGN PROCEDURE OF BOOTSTRAP COMPONENTS

#### Select the Bootstrap Capacitor

The bootstrap capacitor ( $C_{BOOT}$ ) is charged every time the low-side driver is on and the output pin is below the supply voltage ( $V_{DD}$ ) of the gate driver. The bootstrap capacitor is discharged only when the high-side switch is turned on. This bootstrap capacitor is the supply voltage ( $V_{BS}$ ) for the high circuit section. The first parameter to take into account is the maximum voltage drop that we have to guarantee when the high-side switch is in on state. The maximum allowable voltage drop ( $V_{BOOT}$ ) depends on the minimum gate drive voltage (for the high-side switch) to maintain. If  $V_{GSMIN}$  is the minimum gate-source voltage, the capacitor drop must be:

$$V_{BOOT} = V_{DD} - V_{F} - V_{GSMIN}$$
 (eq. 2)

where:

The value of bootstrap capacitor is calculated by:

$$C_{BOOT} = \frac{Q_{TOTAL}}{\Delta V_{BOOT}}$$
 (eq. 3)

where  $Q_{\text{TOTAL}}$  is the total amount of the charge supplied by the capacitor.

The total charge supplied by the bootstrap capacitor is calculated by equation 4:

| Q <sub>TOTAL</sub> | = | $Q_{GATE}$   | + | $(I_{LKCAP})$ | + | I <sub>LKGS</sub> | + | $I_{QBS}$ | + | $I_{LK}$ | + | I <sub>LKDIODE</sub> ) |
|--------------------|---|--------------|---|---------------|---|-------------------|---|-----------|---|----------|---|------------------------|
|                    | Х | $t_{ON} + 0$ | Q | s             |   |                   |   |           |   |          |   | (eq. 4)                |

where:

| Q <sub>GATE</sub>  | = Total gate charge;                     |
|--------------------|------------------------------------------|
| I <sub>LKGS</sub>  | = Switch gate-source leakage current;    |
| I <sub>LKCAP</sub> | = Bootstrap capacitor leakage current;   |
| I <sub>QBS</sub>   | = Bootstrap circuit quiescent current;   |
| I <sub>LK</sub>    | = Bootstrap circuit leakage current;     |
| Q <sub>LS</sub>    | = Charge required by the internal level  |
|                    | shifter, which is set to 3 nC for all HV |
|                    | gate drivers;                            |
| t <sub>ON</sub>    | = High-side switch on time; and          |
|                    |                                          |

 $I_{LKDIODED}$  = Bootstrap diode leakage current.

The capacitor leakage current is important only if an electrolytic capacitor is used; otherwise, this can be neglected.

*For example:* Evaluate the bootstrap capacitor value when the external bootstrap diode used.

- Gate Drive IC = FAN7382 (ON Semiconductor)
- Switching Device = FCP20N60 (ON Semiconductor)
- Bootstrap Diode = UF4007
- V<sub>DD</sub> = 15 V
- $Q_{GATE} = 98 \text{ nC}$  (Maximum)
- $I_{LKGS} = 100 \text{ nA}$  (Maximum)

- $I_{LKCAP} = 0$  (Ceramic Capacitor)
- $I_{QBS} = 120 \ \mu A \ (Maximum)$
- $I_{LK} = 50 \ \mu A$  (Maximum)
- $Q_{LS} = 3 nC$
- $T_{ON} = 25 \ \mu s$  (Duty = 50% at  $f_s$

μ

### CONSIDERATION OF BOOTSTRAP APPLICATION CIRCUITS

Bootstrap Startup Circuit

### CHOOSE CURRENT CAPABILITY HVIC

The approximate maximum gate charge  $Q_G$  that can be switched in the indicated time for each driver current rating is calculated in Table 1:

#### Table 1. EXAMPLE HVIC CURRENT-DRIVE CAPABILITY

|                   | Switching Time (t <sub>SW_ON/OFF</sub> )  |        |  |  |  |  |  |
|-------------------|-------------------------------------------|--------|--|--|--|--|--|
| Needed<br>Current | 100 ns                                    | 50 ns  |  |  |  |  |  |
| Rating            | Maximum Gate Charge (Q <sub>G,MAX</sub> ) |        |  |  |  |  |  |
| 2 A               | 133 nC                                    | 67 nC  |  |  |  |  |  |
| 4 A               | 267 nC                                    | 133 nC |  |  |  |  |  |
| 9 A               | 600 nC                                    | 300 nC |  |  |  |  |  |

1. For a single 4 A, parallel the two channels of a dual 2 A!

For example, a switching time of 100 ns is:

1 % of the converter switching period at 100 kHz;

3 % of the converter switching period at 300 kHz; etc.

1. Needed gate driver current ratings depend on what gate charge  $Q_G$  must be moved in switching time  $t_{SW-ON/OFF}$  (because average gate current during switching is  $I_G$ ):

$$I_{G.AV.SW} = \frac{Q_G}{T_{sw\_on] \times \varkappa = j^{\approx} \varkappa < j}}$$
 (eq. 16)

 $\mathbf{R}_{\text{DRV(ON)}} = \frac{V_{\text{DD}}}{I_{\text{SOURCE}}} = -\frac{15 \text{ V}}{15 \text{ V}}$ 

(eq. 30)

### Remedies of Bootstrap Circuit Problem



Figure 25.

ON Semiconductor and on the united States and/or other countries. LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. On Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property